Интернет. Безопасность. Программы. Полезные советы

Признаки капельно струйной печати на банкнотах. Знакосинтезирующие печатающие устройства (принтеры). Матричные, капельно-струйные, лазерные принтеры: устройство и принцип работы. Признаки принтеров. Установление факта выполнения документа на термографичес

Рис. 2.2.10. Схема печатающего устройства, использующего твердые чернила. На схеме: 1 - офсетный барабан, 2 - печатающая головка, 3 - устройство очистки барабана, 4 - прижимной валик, 5 - бумага, 6 - устройство подогрева бумаги Рис. 2.2.11. Схема подачи чернил из резервуара (а) и схема печатающей головки в твердо-чернильном принтере (б). На схеме: 1 - резервуар, 2 - каналы, 3 - распределительный канал, 4 - входной канал из распределительного канала в эмиттеры капель, 5 - напорная камера, 6 - выходной канал, 7 - сопло, 8 - пьезоактиватор. Стрелки - капельные струи Рис. 2.2.19. Печатающая головка HP шириной 4,25 дюйма (ее вид сверху). Видны 5 кристаллов с четырьмя рядами сопел Рис. 2.2.14. Сечение эмиттера капли головки Memjet с подвесным нагревателем . На схеме: 1 - напорная камера, 2 - сопловая пластина, 3 - входной канал, 4 - спиралеобразный нагревательный элемент, 5 - чернила, 6 - паровой пузырек, 7 - капля Рис. 2.2.15. Общий вид эмиттера капли головки Memjet с подвесным нагревателем. На схеме: 1 - сопловое отверстие, 2 - нагреватель Рис. 2.3.1. Типовое строение фотобумаг для струйной печати: а - глянцевая бумага, б - бумага, основа которой имеет меловое покрытие, в - бумага с основой без покрытия Рис. 2.3.2. Схема фотобумаги с гибридным красковоспринимающим покрытием: 1 - полимерный слой, 2 - слой, удерживающий чернила, 3 - слой, придающий белизну, 4 - основа с полиэтиленовым покрытием, 5 - гибридные частицы, 6 - микропоры

Струйная печать состоит из одной стадии - получения изображения на печатном материале. Изображение формируется капельными струями чернил, вылетающими из печатающей головки. Чернила - жидкие краски с вязкостью 1...30 сПз. Печать управляется электрическими сигналами, подаваемыми на каждый генератор капель печатающей головки в каждый момент печати. Сигнал (импульс напряжения) управляет полетом одной капли.

В подавляющем большинстве принтеров генератор капель заканчивается соплом - калиброванным отверстием диаметром от нескольких микрометров до нескольких десятков микрометров. Именно из сопел вылетают капельные струи чернил, рисующие изображения на печатном материале. Однако есть способы струйной печати, где печатающие головки не содержат сопел. Один из них недавно вышел на рынок струйной печати под названием «Tonejet».

Печатающие головки, как правило, содержат множество генераторов капельных струй (эмиттеров капель), расположенных рядами по длине печатающей головки с плотностью размещения в среднем 150-600 на дюйм. Обычно рядов - 2, причем источники струй (сопла) в рядах смещены относительно друг друга так, что источники второго ряда оказываются между источниками первого ряда. Так, физическое разрешение печати повышается вдвое (300-1200 красочных точек на дюйм). Механизм управления записью изображения находится либо в компьютере (драйвер принтера), либо в контроллере принтера. Цифровые оригиналы преобразуются в сигналы, передаваемые в управляющую плату печатающей головки, а оттуда в чипы головки, управляющие работой генераторов капель, находящихся на поверхности чипа (число чипов может быть разным - от одного до нескольких штук). Струйный принтер содержит механизм перемещения головки (или блока головок) поперек бумажного листа и механизм перемещения бумаги, а также систему подачи чернил из резервуара (картриджа) с чернилами. В подавляющем большинстве принтеров производится многокрасочная печать. Печатающие головки для разных красок расположены друг за другом и перемещаются на одной каретке. Если головка печатает несколькими красками, то в ней ряды генераторов для разных красок размещены параллельно друг другу.

Печатающая головка - основной элемент струйного печатающего устройства. Струйная печать используется в принтерах различного класса и формата и в цифровых печатных машинах. Использование чернил различной природы позволяет печатать на разнообразных материалах.

Практическое применение нашли три вида струйной печати:

  • Непрерывная струйная печать (continuous inkjet). В этом виде печати из каждого сопла печатающей головки непрерывно вылетает струя чернил, разбивающаяся на мельчайшие капельки. Из струи выделяются капли, идущие на построение изображения. Неиспользованные капли направляются в каплеуловитель.
  • Импульсная струйная печать (drop on demand). Здесь капля вылетает из сопла печатающей головки только при получении электрического импульса. Поэтому этот вид струйной печати называют также «капля по требованию».
  • Tonejet. В этом способе чернилами является дисперсия частиц пигмента в неполярной жидкости. Генератор капель (источник капельной струи) представляет собой заостренный проводящий выступ на теле печатающей головки. Чернила текут под давлением к источнику. При наложении импульса напряжения происходит зарядка частиц пигмента чернил. Они перемещаются электрическим полем к выступу, где концентрация краски заметно выше исходной. Заостренный конец выступа за счет повышенной напряженности электрического поля отталкивает заряженные одноименно частицы пигмента. Они вылетают, увлекая за собой часть жидкости. Образуются капли концентрированной краски. Эти капли летят на печатный материал, рисуя изображение. Печатающая головка содержит множество источников, расположенных рядами. В настоящее время способ используется в упаковочной промышленности для печати на консервных банках.

Общие сведения

Непрерывная струйная печать состоит из трех процессов:

  • образование струй чернил и разбиение их на капли;
  • разделение капель на рабочие, идущие на построение изображения, и нерабочие, попадающие в каплеуловитель;
  • выделение из капельных струй рабочих капель, и направление струй рабочих капель на печатный материал; доставка неиспользованных капель в каплеуловитель.

В настоящее время до промышленного использования доведено два способа непрерывной струйной печати, в которых перечисленные выше процессы проходят по-разному.

В давно и широко применяемом способе капли формируются за счет наложения на струю чернил высокочастотных механических колебаний, формирующих капиллярную волну. Разделение капель на рабочие и нерабочие производится путем их селективной зарядки, а разделение капельных струй - путем отклонения электрическим полем траектории заряженных капель, в то время, как незаряженные капли летят прямолинейно.

В новом способе непрерывной струйной печати Stream, разработанном фирмой Kodak, для формирования капельной струи на вылетающую из сопла чернильную струю периодически подают тепловые импульсы, изменяющие поверхностное натяжение чернил. Капли образуются из холодных участков струи. Разделение капель на рабочие и нерабочие производится формированием капель разных размеров. Выделение из струи рабочих капель осуществляется потоком воздуха, направленным перпендикулярно к траектории струи. Воздушный поток сильнее отклоняет маленькие капли, и они попадают в каплеуловитель. Большие капли продолжают лететь к печатному материалу и идут на построение изображения.

В этом способе электропроводящие чернила подаются под давлением в генератор капель печатающей головки. Струя вылетает из сопла генератора. Где-то у выхода из сопла, например, на сопловой пластине расположен пьезоэлектрический стимулятор, формирующий капельную струю. На пьезоэлектрик подается высокочастотное электрическое напряжение. За счет деформации пьезоэлектрика возникают механические колебания, которые сообщаются струе и вызывают образование капель. При пролете струи через зону зарядки на заряжающий электрод подаются импульсы электрического напряжения. Производится селективная зарядка капель. Далее капельная струя разделяется на две струи: заряженную и незаряженную. Одна из них попадает на печатный материал, другая - в каплеуловитель.

На рис. 2.1.1 приведена принципиальная схема непрерывной струйной печати незаряженными каплями.

Генератор струи содержит чернильную камеру 1, в которую электропроводящие чернила подаются из красочной системы через трубку 2. На выходе из чернильной камеры находится одно или ряд калиброванных отверстий, называемых соплами. Сопла электропроводящие, например, металлические. Печатающие головки могут быть односопловыми или многосопловыми. Схема односопловой головки показана на рис. 2.1.3 . На рис. 2.1.1 представлена схема генератора струи многосопловой головки, где сопла выполнены в сопловой пластине. Чернила вылетают под давлением из каждого сопла в виде тонкой струи.

Вблизи сопла на сопловой пластине расположен пьезокерамический элемент 3, на который подается высокочастотное переменное электрическое напряжение. В пьезокерамическом элементе возникают механические колебания той же частоты (обратный пьезоэффект). Колебательное возмущение от пьезоэлектрика передается чернилам, и в струях возникает капиллярная волна (волна, в которой большую роль играет поверхностное натяжение жидкости). Поскольку частота наложенных колебаний соответствует режиму резонанса (она совпадает с частотой собственных колебаний струи), струя на небольшом расстоянии от сопла распадается на мелкие одинаковые по размеру капли.

Система разделения капельной струи включает заряжающий электрод, дефлектор и каплеуловитель.

Заряжающий электрод 5 находится недалеко от сопла. Зарядка индукционная. Она происходит за счет того, что струя электропроводящих чернил заземлена, а слой воздуха между струей и заряжающим электродом обладает диэлектрическими свойствами. Когда от генератора изображения на заряжающий электрод подается импульс электрического напряжения, в заземленной струе около электрода появляется заряд, противоположный по знаку заряду электрода. Струя входит в зону действия электрода в момент, предшествующий отделению от нее капельки, поэтому происходит зарядка этой капли. Подача электрических импульсов должна быть строго синхронизирована с каплеобразованием.

Выйдя из зоны действия заряжающего электрода, струя пролетает мимо дефлектора 6, на который подается высоковольтное электрическое напряжение, по знаку одинаковое со знаком заряда капель. Каплеуловитель 7 заземлен. Возникающее электрическое поле отклоняет заряженные капли в каплеуловитель, а незаряженные беспрепятственно летят по прямолинейному пути на печатный материал. Из каплеуловителя чернила попадают в систему рециркуляции или в специальную емкость и затем выбрасываются (при использовании печатающих головок с 1-2 соплами на краску).

Запись изображения заряженными каплями используется в непрерывной струйной печати с многоуровневым отклонением струи (Multiple-deflection Continuous Inkjet, рис. 2.1.2 ). Капли струи заряжаются группами таким образом, что каплям группы сообщаются заряды ряда величин. Дефлектор отклоняет капли с разными зарядами под разными углами, создавая веерную развертку капельной струи. Это позволяет записывать полоску изображения, содержащую несколько строчек. Незаряженные капли летят по прямолинейному пути и попадают в каплеуловитель, а оттуда - в устройство рециркуляции чернил. При записи заряженными каплями возникают проблемы с точностью позиционирования капель на бумаге из-за их взаимодействия между собой. Способ широко используется в маркировочных принтерах, предназначенных для нанесения надписей, дат и штрих-кодов на поверхность товарных и промышленных изделий.

В способе с бинарным отклонением струи (рис. 2.1.1 ) существует два варианта. В первом, однобитном варианте, каждая точка изображения формируется из одинакового количества чернил, например, из одной капли размером 84 пл (пиколитр - пометка">Iris Print, где при разрешении 300 dpi получается эмуляция разрешения 2400 dpi. Головки имеют 1-2 сопла на краску.

Сложность мультибитной записи заключается в следующем. Максимальное количество чернил, попадающих на микроучасток (точку) струйного отпечатка, должно соответствовать максимальной оптической плотности изображения. Слишком большое количество чернил приведет к расплыванию и исчезновению градаций тонов в тенях изображения. Слишком маленькое количество чернил не позволит получать цвета высокой насыщенности.

Если это количество обеспечивается одной каплей на точку, капля должна быть большой. Если эта задача выполняется группой из 4 капель, объем каждой капли должен быть в 4 раза меньше, при использовании групп из 30 капель объем одной капли составляет 3-4 пл.

Объем капли зависит от диаметра струи (сопла) D и длины волны формула" src="http://hi-edu.ru/e-books/xbook1004/files/130.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" - скорость струи, равная в струйном принтере Iris Print 50 м/с, диаметр сопла равен 10 мкм. Частота f представляет собой частоту колебаний пьезоэлектрика и частоту каплеобразования, а длина волны пометка">Iris Print равна 1000 кГц.

Для стабилизации процесса каплеобразования частота наложенных колебаний должна совпадать по величине с частотой собственных колебаний струи. Тогда колебательное возмущение будет находиться в резонансе с собственным колебанием струи. Именно с этой частотой будут образовываться капли..gif" border="0" align="absmiddle" alt=".gif" alt="ссылка на источники литературы" onclick="showlitlist(new Array("L. Palm, L. Wallman, Nh. Laurell, J. Nilsson. Development and characterisation of silicon micromachined nozzle units for continuous ink jet printers. Journal of Imaging Science and Technology, v. 44, № 6, 2000, p. 544-551.",""));">].

Скорость струйной печати зависит от количества сопел в печатающей головке (от ширины печатаемой полоски). Головки, имеющие небольшое количество сопел на цвет краски, должны совершать челночное перемещение поперек направления движения бумажного листа. Это замедляет печать, так как бумага может сместиться на шаг только после записи цветной строки изображения. Сильнее всего это сказывается в принтерах с 1-2 соплами на краску. В этом случае несмотря на высокую скорость капельной струи, общая скорость записи изображения невелика (в принтере Iris 2 Print изображение формата А2 записывается за 13 минут).

Реализовать возможности скоростной печати можно при использовании многосопловых широкоформатных печатающих головок. На рис. 2.1.4 показана принципиальная схема работы девятисопловой головки.

Печатающая головка имеет распределительный канал, в который под давлением подаются чернила. Если выход из канала закрыт, чернила вылетают струями через сопла (позиция 2 на рис. 2.1.4).

Размер широкоформатных печатающих головок ограничивается тем, что высокочастотные колебания пьезоэлектрика передаются не только струям, но и телу печатающей головки. Головка, в свою очередь, передает вибрацию струям чернил. Колебания, полученные струей от тела головки, отличаются от полезных колебаний струи и нарушают каплеобразование (образуются капли разных размеров и может изменяться длина непрерывной части струи, из-за чего нарушится зарядка капель). Указанные проблемы обостряются при возрастании ширины печатающей головки и частоты наложенных колебаний. Проблемы решаются разными способами. На рис. 2.1.5 показана печатающая головка, в которой колебания пьезоэлектрика передаются только сопловой пластине . Эта головка, имеющая ширину 7,5 см, работает на частоте колебаний 200 кГц.

В скоростных струйных печатных машинах Kodak Versamark используются печатающие головки шириной до 9 дюймов (22,8 см) с плотностью размещения 300...360 сопел на дюйм. При многокрасочной печати головки для разных красок располагают одну за другой. Машины позволяют проводить печать со скоростью более 100 м/мин. Так, модель Kodak Versamark VX 5000 Plus, доступная в 11 различных конфигурациях, позволяет печатать со скоростями 228 м/мин (3080 страниц А4 в минуту) и 152 м/мин (2052 страницы А4 в минуту). При высокой скорости разрешение печати и качество воспроизведения тоновых и штриховых изображений ухудшаются. Режим может использоваться для печати почтовых рассылок и тразакционной печати.

Фирмой Kodak разработан способ непрерывной струйной печати с термической активацией каплеобразования. Принцип ее заключается в следующем. Вылетающая из сопла струя получает от микронагревателя тепловые импульсы определенной частоты. Поверхностное натяжение чернил зависит от их температуры, поэтому каждый тепловой импульс вызывает изменение поверхностного натяжения (уменьшает его). Поверхность жидкости выводится из состояния равновесия, и в струе возникает капиллярная волна. При наложении таких колебательных возмущений на собственные колебания чернил струя разбивается на отдельные капли.

Как и в классическом способе непрерывной струйной печати, в новом способе создается непрерывная капельная струя и обеспечивается ее разделение на рабочие и нерабочие капли.

Печатающая головка с термической активацией каплеобразования содержит множество сопел, снабженных нагревательными элементами. При подаче на нагреватель импульса электрического напряжения через него проходит ток, вызывающий сильный кратковременный нагрев. Тепловой импульс передается чернилам струи. Поверхностное натяжение нагретого участка струи понижается. Так как нагрев, вызывающий возмущение струи, происходит периодически, возникает капиллярная волна, и струя на некотором расстоянии от сопла разбивается на капли. Размер капель зависит от частоты подачи тепловых импульсов. Чем они реже, тем больше капли (рис. 2.1.6 ). Запись изображения производится большими каплями.

Когда запись изображения не производится, частота подаваемых импульсов высокая. На рис. 2.1.6 их 5 за период Т. Образующиеся маленькие капли попадают в каплеуловитель. Если капля должна попасть на печатный материал, частота импульсов понижается (1 импульс за период). Объем капли увеличивается, например, в 5 раз.

Так как рабочие и нерабочие капли имеют разные размеры, их можно заставить лететь по разным траекториям потоком воздуха.

В струйной печатающей головке струи, содержащие капли разных размеров, летят прямолинейно сверху вниз, пока не попадают в зону действия газового дефлектора, где перпендикулярно направлению струй подается поток воздуха (рис. 2.1.7 ). Капли, имеющие меньший объем и массу, смещаются газовым потоком на большее расстояние, чем большие капли. Таким образом, происходит разделение струй на две. В принципе, можно использовать для печати либо большие капли, либо маленькие капли. На схеме рис. 2.1.7 показана печать большими каплями. Маленькие капли, отклоненные газовым дефлектором в наибольшей степени, попадают в каплеуловитель.

На основе технологии Kodak Stream были созданы 2 цифровые печатные машины (ЦПМ), печатающие водными чернилами. Машина Kodak PROSPER 1000 Press предназначена для однокрасочной печати со скоростью до 200 м/мин на рулонной бумаге плотностью 45-175 г/кв.м. Ширина печати до 600 мм, разрешение 600 dpi, размер капель 6 или 9 пл. Машина содержит две линейки печатающих головок, по 6 струйных модулей каждая. Батареи головок размещены поперек рулона и во время печати они неподвижны. После каждой линейки головок установлено ИК-сушильное устройство.

Машина может производить печать со скоростью 3600 стр. А4/мин на одном рулоне или на двух рулонах (лицо и оборот). Ее можно использовать для печати почтовых рассылок и книжной продукции.

Вторая рулонная машина Kodak PROSPER 5000XL Press предназначена для 4-красочной печати. Печатающее устройство содержит 4 широкоформатной головки (линейки из 6 печатающих головок). После каждой широкоформатной головки расположено сушильное устройство, для окончательной сушки служит пятое устройство.

Пригодна бумага плотностью 45-300 г/кв.м, с покрытием и без покрытия. При печати на бумагах без покрытия в линию с машиной может быть установлено устройство для нанесения подслоя (праймера), что позволяет расширить ассортимент печатных материалов, а также послепечатное оборудование.

Машина предназначена для печати книг, почтовых рассылок, каталогов и вкладок.

Для гибридной печати предназначены печатающие головки Kodak Prosper S10 шириной около 10 см. Она впечатывает переменные данные в офсетную продукцию.

В импульсной струйной печати капля чернил выталкивается из сопла при подаче электрического импульса на активатор (actuator), отвечающий за образование капель. Чернила, вылетевшие из сопла, полностью идут на построение изображения на печатном материале. Печатающая головка для импульсной струйной печати содержит множество сопел. Струйный микромодуль, относящийся к каждому соплу, включает чернильную камеру, канал для входа чернил в камеру из резервуара (или распределительного канала) и выходной канал, заканчивающийся соплом. На стенке выходного канала или на стенке (крыше) чернильной камеры располагается активатор, получающий импульсы электрического напряжения из микрочипа, управляющего работой головки. Струйный микромодуль называется также эмиттером капель или генератором капель. Способ импульсной струйной печати определяется видом используемого активатора. Различают следующие виды импульсной струйной печати: пьезоэлектрическую (пьезоструйную), термоэлектрическую (термоструйную и термомеханическую).

Типовая пьезоструйная печатающая головка включает линейку эмиттеров капель, каждый из которых заканчивается калиброванным отверстием - соплом. В общем случае каждое сопло соединено каналом с чернильной камерой. Камера узким каналом связана с резервуаром чернил, общим для всех сопел, печатающих чернилами одного цвета. На верхней стенке чернильной камеры, или на стенке канала, связанного с соплом, расположен пьезоэлемент, который при сообщении электрического импульса изменяет внутренний объем эмиттера. Уменьшение объема приводит к выталкиванию из сопла порции чернил, которая вылетает в виде капельки того или иного размера. Размеры капелек и их скорость зависят от размеров сопла, конструкции печатающей головки, режимов ее работы (в том числе формы электрического сигнала, подаваемого на пьезоэлемент) и от чернил. Эмиттеры капель пьезоструйных головок могут различаться по конструкции и по характеру деформации пьезоэлектрического элемента.

Причиной деформации пьезоэлектриков при наложении электрического поля является обратный пьезоэлектрический эффект, заключающийся в следующем. Под действием электрического поля пьезоэлектрики быстро и сильно поляризуются и поэтому изменяют свои размеры. При снятии поля происходит возвращение этих материалов к первоначальному состоянию.

Некоторые материалы, например, пьезокерамика, проявляют способность к обратному пьезоэлектрическому эффекту, если их предварительно поляризуют. В струйных печатающих головках широко используют пьезокерамические активаторы на основе цирконата - титаната свинца, так как они обладают высокой прочностью и стабильностью пьезоэлектрических свойств.

При наложении электрического поля на поляризованную пьезокерамическую пластинку возможно два вида деформации.

Если направление электрического поля параллельно направлению вектора поляризации, пьезокерамическая пластинка изменяет горизонтальный и вертикальный размеры, сохраняя свой объем. В зависимости от того, совпадают направления вектора поляризации и вектора напряженности поля или они противоположны друг другу, пластинка становится тоньше и шире либо толще и уже.

Если пьезокерамическая пластинка жестко закреплена на эластичной стенке камеры (рис. 2.2.1 ), то при изменении ее размеров происходит изгибание эластичной стенки. При ее изгибании в сторону камеры происходит уменьшение объема камеры, и выдавливание из сопла капли чернил. Изгибаясь наружу, пьезокерамический активатор увеличивает объем камеры, и в камеру из резервуара через входной канал попадает порция чернил. Удельная деформация чрезвычайно мала, поэтому правильнее говорить об акустической волне, возникающей внутри эмиттера, выталкивающей каплю из сопла. Чтобы усилить давление на чернила, пьезоактиватор делают достаточно большим. Так, при ширине камеры 108 мкм и ее длине 400 мкм, пьезоактиватор в печатающих головках Epson Micro Piezo составляют из пьезокерамических пластинок длиной 1 мм, получая общие размеры выделение">рис. 2.2.2 .

Деформация в режиме сдвига наблюдается, если направления электрического поля и поляризации пьезокерамического элемента перпендикулярны друг к другу. Этот тип деформации называется Shear Mode (режим сдвига).

Тип деформации пьезоэлектрического активатора при работе в режиме сдвига показан на рис. 2.2.3 . В печатающих головках для импульсной струйной печати реализовано два варианта: «Shear Mode» фирмы Spectra и «Shear Mode/Shared Wall» фирмы Хааr. В первом случае из пьезокерамики выполнена верхняя стенка чернильных камер, а во втором - пьезокерамическими являются стенки каналов.

Рассмотрим принцип работы эмиттеров струйных печатающих головок фирмы Spectra, пьезоэлектрики которых работают в режиме сдвига (Shear Mode).

В головках Spectra из пьезокерамики выполнена тонкая покровная пластина чернильных камер. Пьезокерамическая пластина общая, а электроды индивидуальны для каждой камеры. При подаче импульса напряжения на средний электрод (электроды справа и слева заземлены) происходит деформация сдвига в участках пьезоэлектрика, расположенного по обеим сторонам электрода. Так как электрические поля справа и слева от электрода имеют противоположные направления, деформация обеспечивает подъем участка тонкой пьезокерамической пластины, находящегося под средним электродом. Объем чернильной камеры увеличивается, и в нее засасывается порция чернил. По окончании действия импульса пластина возвращается в прежнее положение, из сопла, находящегося напротив среднего электрода, выталкивается чернильная капля. При выталкивании капли возможна деформация вовнутрь камеры за счет изменения направления электрического поля. Характер деформации и кинетика образования и выброса капли видны на рис. 2.2.4 .

Схема печатающих головок Хааr (и Toshiba ), работающих на принципе Shear Mode/Shared Wall (то есть в режиме «сдвиг/общая стенка»), приведена на рис. 2.2.5 .

В этой головке к базовой пластине прикреплены два пьезокерамических слоя, в них выполнены каналы эмиттеров капель. Они заполняются чернилами через распределительную камеру, находящуюся под покровной пластиной, где имеется отверстие для связи с картриджем чернил. Верхний и нижний пьезокерамические слои поляризованы в противоположных направлениях. На стенках каналов находятся электроды. Электроды, прикрепленные к стенкам одного канала, электрически связаны между собой. Спереди к головке прикрепляется пластина с соплами таким образом, что каждый канал заканчивается соплом.

При подаче импульса напряжения на электроды, находящиеся по обе стороны стенки, разделяющей соседние каналы, в ней создается электрическое поле. Так как электроды одного канала связаны, электрическое поле и деформация сдвига, возникающая в стенках канала, имеет противоположное направление. Так как верхняя и нижняя части стенок прикреплены к пластинам, сдвигаться могут лишь их средние части. Характер деформации каналов виден на рис. 2.2.5, б.

При формировании капли канал вначале увеличивается в объеме, а затем за счет изменения направления электрических полей он сужается и из сопла выталкивается капля чернил. Затем канал снова расширяется и заполняется чернилами из резервуара. В данном типе головки одновременно может работать только каждое третье сопло. Для повышения аппаратного разрешения, превышающего 360 dpi, печатающая головка ориентируется так, что сопловые пластины с линейками сопел составляют с направлением движения блока головок угол, отличный от формула" src="http://hi-edu.ru/e-books/xbook1004/files/10v-12.gif" border="0" align="absmiddle" alt=" л), он составляет около 20 мкм. В современном струйном оборудовании минимальный объем капли уменьшился до 1,5...5 пл, что привело к соплам размером 10 мкм и даже меньше.

В традиционных печатающих головках Epson при маленьком размере сопла (10-20 мкм) ширина чернильной камеры составляет 108 мкм, а ширина пьезоэлектрика - 141 мкм. Это ограничивает плотность размещения сопел 180 на дюйм. Чтобы повысить разрешение печати с 180 до 360 dpi сопла располагают в два ряда со сдвигом.

Дальнейшее повышение разрешения (увеличение количества тонов и цветов изображения) достигается выбросом капель нескольких размеров.

Размер капель и скорость работы головки зависят от частоты, длительности и формы электрического сигнала, подаваемого на пьезоэлектрический активатор.

Наиболее эффективную работу головки обеспечивает рабочая частота выброса капель, соответствующая собственной частоте колебаний мениска жидкости в сопле. Если собственная частота равна 40 кГц, то ширина сигнала (длительность) должна быть около 25 мкс.

Сигнал (импульс напряжения) должен состоять, как минимум, из двух частей, по длительности, равных половине длины волны. Половина сигнала отвечает за выталкивание чернил из сопла, а половина помогает ускорить заполнение эмиттера чернилами. Наибольшую скорость выброса капель обеспечивает режим, при котором вначале импульс втягивает мениск в сопло, а чернила - в камеру. В тот момент, когда чернила готовы изменить направление движения, вторая половина импульса сообщает чернилам импульс движения в сторону сопла. Оба колебания (собственное и наложенное) находятся в одной фазе, поэтому они усиливают друг друга и возрастает амплитуда колебаний, заканчивающихся выбросом капли.

Форма импульса сложная, она управляет следующими перемещениями чернил. Вначале мениск медленно втягивается в сопла перед выбросом капель, чтобы получить одинаковую форму мениска во всех соплах. В это время в камеру из входного канала попадает порция чернил. Затем давление в чернильных камерах резко возрастает за счет того, что стенка камеры изгибается внутрь, и капля выталкивается из сопла. Далее производится втягивание мениска, чтобы быстро подавить его осцилляцию после выброса капли.

На рис. 2.2.6 показан выброс капель большого размера (режим I) и маленького размера (режим II). Период сигнала отсчитывается от начала подъема (положительная часть импульса заполнения мениска) через спад от максимума до минимума (выдавливание чернил) до подъема до нулевого уровня (отрицательная часть импульса заполнения мениска). Таким образом, на выброс струи предназначена четверть ширины сигнала (спад). Для маленьких капель (режим II) время набора чернил уменьшено и в состав сигнала входит дополнительный маленький импульс, заканчивающийся на выдавливании чернил до нулевого уровня мениска.

Другой способ получения капель разных размеров состоит в слиянии нескольких капель в одну. В печатающих головках Panasonic используется метод резонанса, когда для получения капель больших размеров на пьезоактиватор подается один или несколько предварительных импульсов. В результате сложения амплитуд колебания размер вылетающей капли увеличивается.

Распространенным способом является выброс из сопла в одну точку материала цепочки из разного количества капель (до 3 или 7). На материале образуются капли разных размеров. Способ используется, например, в печатающих головках Хааr. В этих головках исходная капля может иметь объем 1 или 6 пл, а капля, составленная из семи капель, - объем 7 или 42 пл соответственно. Большие капли используют для запечатывания сплошных участков, а мелкие капли - для получения мелких деталей и плавного изменения тонов.

Понятно, что при использовании режима переменного размера капель печать идет медленнее, чем в бинарном режиме, где все капли одинаковы.

Использование в комплекте светлых чернил (светлых голубых, пурпурных и серых чернил) позволяет еще более повысить число градаций по насыщенности для каждого цвета чернил и общее число цветов.

В последние годы для изготовления печатающих головок стали использовать методы, характерные для микроэлектроники MEMS (Micro-Electro-Mechanical Systems). Основой любой MEMS- структуры является пластина, представляющая собой кристалл кремния. На одной из кремниевых пластин методами MEMS (напылением, фотолитографией, сухим травлением, лазерной абляцией и др.) формируются структуры эмиттеров головки, а на другой - микросхемы (платы), управляющие образованием капель, и, по необходимости, каналы для подачи чернил. Склеив их вместе, получают чип, который в головках MEMS называют кристаллом. Печатающая головка включает несколько чипов, расположенных с перекрытием крайних сопел.

Применение оборудования и технологий MEMS для изготовления печатающих головок дает возможность создавать плотные ряды сопел микронного и субмикронного размеров, с высокой повторяемостью размеров элементов, прочностью элементов, а также позволяет удешевить производство головок большого размера. Технологии MEMS используют многие фирмы-производители печатающих головок и принтеров. В качестве примеров рассмотрим новые печатающие головки двух фирм: Epson и Dimatix (образована фирмами Fuji и Spectra ).

Печатающая головка Epson последнего поколения называется Micro Piezo TFP Printhead, TFP - аббревиатура «thin film piezo». Головки Micro Piezo TFP содержат тонкопленочные пьезоактиваторы. Если пьезокерамическая пластинка активатора в традиционных головках имела толщину 1 мм и ширину 141 мкм, то толщина нового пьезоэлектрика 1 мкм, а его ширина 71 мкм. Это стало возможным за счет применения нового материала с повышенной удельной деформацией и технологий MEMS для нанесения тонких пленок.

Новые печатающие головки могут выбрасывать капли того же размера, что и традиционные головки, при вдвое меньшем объеме чернильной камеры. В них сопла одного ряда располагаются с плотностью 360 на дюйм. Два ряда сопел, размещенные со сдвигом, обеспечивают физическое разрешение печати 720 dpi. Головки могут образовывать капли разных размеров, как и головки предыдущего поколения, что позволяет значительно увеличить разрешение печати.

Поскольку технологии MEMS позволяют получать строго одинаковые структуры эмиттеров, стало возможным увеличение размера печатающих головок. На рис. 2.2.7 показан чип шириной 2,54 см, содержащий 8 рядов сопел, причем сопла для красок одного цвета расположены симметрично относительно средней линии, параллельной линиям сопел. Это позволяет получать одинаковый порядок наложения красок при прямом и возвратном перемещении головки. Разместив 4 чипа на общем основании в два ряда в шахматном порядке, получили печатающую головку шириной 30,8 см.

Все это позволяет значительно повысить скорость печати при сохранении высокого разрешения и высокого качества печати. Так, в офисных принтерах B500DN с головками шириной 10,8 см скорость цветной печати в стандартном режиме составляет 32 с/мин.

В струйной цифровой печатной машине Screen True Press 520 Jet из головок Micro Piezo TFP, размещенных на общем основании, получают головку шириной до 520 мм. Расположенные друг за другом поперек печатного материала широкие головки обеспечивают скорость цветной печати водными чернилами 63 м/мин при разрешении 720выделение">рис. 2.2.8 .

Фирма Dimatix (образованная компаниями Spectra и Fuji ) выпускает широкоформатные головки «М-класса», (изготовленные по технологии MEMS ) под тем же названием (рис. 2.2.9 ). Печатающая головка составляется из кристаллов (кремниевых чипов) размером 45пометка">б ). Расстояние между соплами одного ряда соответствует разрешению 182 dpi. Каналы подачи чернил проходят вдоль основания кристалла.

Строение эмиттера капель новой печатающей головки (рис. 2.2.9, а ) другое, чем у головок Spectra (рис. 2.2.4 , а ). Чернила подаются в напорную камеру снизу основания кристалла через концевое акустическое устройство 3. Наличие такого устройства увеличивает за счет резонанса амплитуду акустической волны, выталкивающей чернила. Это позволяет уменьшить размер пьезоактиватора, расположенного в позиции 1 рисунка. Из напорной камеры 2 чернила поступают через выходной канал в сопло, откуда перпендикулярно плоскости кристалла вылетают чернильные капли с частотой 100 кГц.

Из кристаллов может быть получена составная головка большой длины, в том числе страничного формата. Кристаллы располагают на общем основании, содержащем управляющую плату, ступенчато с наклоном (в форме лесенки). Так обеспечивается перекрытие сопел в направлении движения полотна печатного материала. Головка в процессе печати неподвижна. Такие печатающие головки стоят в листовой струйной цифровой печатной машине Fujifilm Digital Inkjet J Press 720, печатающей водными чернилами со скоростью 180 стр..gif" border="0" align="absmiddle" alt="1200 dpi.

Твердые чернила имеют в своем составе полимерный воск. При комнатной температуре они твердые, а при нагревании они плавятся и превращаются в жидкость, низкая вязкость которой позволяет использовать чернила для струйной печати. В настоящее время чернила применяются в многофункциональном устройстве Xerox ColorQube серии 9200, например, ColorQube 9203. Компания Xerox разработала также струйную цифровую печатную машину с твердыми чернилами. Рулонная машина Xerox Ci Press 500 печатает на полотне шириной до 520 мм со скоростью до 150 м/мин.]) в виде твердых брикетов 4-х цветов, различающихся по форме.

В головке они нагреваются, расплавляются и попадают в чернильный резервуар, а оттуда - в распределительные каналы печатающей головки. Головка содержит 4 распределительных канала по одному на цвет чернил и ряды сопел для чернил цветов CMYK..gif" border="0" align="absmiddle" alt=" Чернила, попадая на барабан, остывают, они не растекаются по поверхности барабана, но сохраняют пластичность. Полученные на барабане точки и штрихи - рельефные.

Чернильное изображение доставляется на вращающемся барабане в зону переноса на бумагу..gif" border="0" align="absmiddle" alt="600 dpi. Скорость печати в стандартном режиме 60-70, а режиме фотографического качества - 35-38 стр. А4/мин.

В этом способе при закреплении отпечатка на печатном материале происходит изменение фазового состояния чернил, из чернил не выделяются растворители. Поэтому не требуется ни сушка, ни впитывание чернил в печатный материал. Кроме того, макулатура легко очищается от краски. Недостатком чернил является чувствительность отпечатков к повышенной температуре. Ведется разработка чернил, которые могут отверждаться на отпечатке.

Hewlett Packard и Lexmark, а генерацию капель в каналах - фирма Canon, назвавшая свою технологию Bubble Jet (фирмы приведены для примера). Недавно на рынке появились принтеры с печатающим устройством Memjet, печатающие головки к ним разработала австралийская фирма Silverbrook. В эмиттерах капель этих головок нагреватель расположен, в основном, внутри канала с чернилами.

Механизм генерации капелек под действием локального нагрева рассмотрим на примере эмиттера капель, использованного в печатающих головках фирмы Canon (рис. 2.2.12 ). Эмиттер состоит из узкой напорной камеры (канала), оканчивающейся соплом с одной стороны и входным каналом из чернильного резервуара - с другой. На стенке канала находится полоска нагревательного элемента. При прохождении через полоску тока она разогревается до высокой температуры, разогревая, в свою очередь, находящиеся рядом чернила. Вода, служащая растворителем чернил, быстро доходит до температуры перегрева (более 200выделение">рис. 2.2.13 приведена схема эмиттера капель с термоэлементом на «крыше» чернильной камеры. Пузырек образуется в этой камере, а капля чернил выдавливается через выходной канал и сопло. Разница между этим вариантом эмиттера и эмиттером Canon состоит в том, что здесь термоэлемент расположен не вблизи сопла, а его отделяет от сопла выходной канал. В остальном механизм выброс капли тот же.

Термоструйная печать широкоформатными головками затрудняется тем, что нагреватели выделяют большое количество тепла. Часть тепла передается телу эмиттера капель, так как нагреватель находится на его стенке. Австралийской фирмой Silverbrook разработан спиральный подвесной нагреватель. Его сечение с образовавшимся паровым пузырьком показано на рис. 2.2.14

В термоструйной печати нельзя, изменяя форму электрического импульса, менять размер капли. Для увеличения глубины цвета используют следующие методы варьирования количества чернил, попадающих на каждый микроучасток изображения. В фотопринтерах Hewlett Packard количество тонов повышается за счет того, что в каждую точку может попадать множество капель чернил, в том числе разного цвета. Вначале это количество доходило до 16 (Photo RET II), а в настоящее время - до 32 (Photo RET IV) капель размером около 4 пл. Слово RET - аббревиатура от Resolution Enhancement Technology (Технология повышения разрешения). Интерполированное разрешение составляет 2400пометка">Canon

для печати фотографического качества использует технологию Drop Modulation Technology, позволяющую генерировать капли двух размеров. Достигается это путем размещения в каждом канале по 2 нагревательных элемента. Если электрический импульс подается на один элемент, образуется маленький пузырек, а при нагревании двух элементов, размер пузырька увеличивается. В первом случае из сопла вылетает капелька в три раза меньше, чем во втором (минимальный объем капли - 4 пиколитра). Чтобы облегчить отделение такой маленькой капли от сопла и обеспечить достаточную скорость ее движения, нагреватели располагаются близко к соплу. Для повышения количества тонов и цветов в фотопринтерах используется набор чернил 6-8 цветов, включающих в себя, помимо 4-х цветов CMYK, светлые чернила, голубые, пурпурные и серые. Светлые чернила особенно благоприятно сказываются на воспроизведении светлых цветных участков изображения. Достигается разрешение, эквивалентное 1800 dpi.

Для печати фотографического качества требуется фотобумага.

Для печати на офисных бумагах может быть использован подслой под чернила. Бесцветные подслои наносятся из специальной печатающей головки перед нанесением основных чернил. Именно подслои имеют непосредственный контакт с бумагой. Чернила ложатся на подслой. В этом случае уменьшается впитывание чернил в толщу бумаги, насыщенность цветов отпечатков повышается и увеличивается разрешение печати. Поскольку чернила непосредственно с бумагой не реагируют, понижаются требования к бумаге. Компания HP использует подслой в многофункциональном устройстве СМ8060 и цифровой печатной машине HP T300 Inkjet Web Press.

Термоструйные печатающие головки нового поколения изготовляются методами MEMS (Micro Electro-Mechanical Systems), традиционно используемыми в микроэлектронике. Это увеличивает геометрическую точность выполнения сопел и эмиттеров капель разных (в том числе очень маленьких) размеров, обеспечивает их повторяемость и позволяет применять «масштабирование» - составление из модулей печатающих головок необходимого размера (формата) и тем самым обеспечение заданной ширины печати. Кроме того, использование технологий MEMS позволит удешевить печатающие головки, особенно головки больших форматов.

Рассмотрим, как выглядят эмиттеры капель печатающих головок.

Рис. 2.2.16 иллюстрирует образование капель в эмиттере нового поколения Canon, использованного в принтере Canon i850. На схеме: а - эмиттер в состоянии покоя, б и в - образуется пузырек и выдавливает из сопла чернила, находящиеся в сопловом канале, г - капля вылетела, и эмиттер начинает заполняться чернилами, д - сопловый канал заполнился и готов к выбросу следующей капли. В этих эмиттерах капель из сопел выталкивается строго определенное количество чернил - находящееся в сопловом канале. Формирование капель разных размеров происходит путем использования двух рядов сопел разных размеров. В эмиттерах одного ряда образуются капли 5 пл, а в эмиттерах второго ряда - капли 2 пл.

На рис. 2.2.17 показана схема эмиттера капель печатающей головки HP. Его принципиальное отличие от эмиттера печатающей головки Canon нового поколения в том, что нагреватель находится не на стенке соплового канала, а на стенке чернильной камеры против соплового канала.

На рис. 2.2.18 показан пример строения эмиттера капель, полученного методами MEMS. На рисунке - чернильная камера с сопловым каналом и нагреватель 1, представляющий собой тонкий слой сплава тантала с алюминием. Нагреватель имеет контакты из алюминия 2 и защитный слой 3. Канал подачи чернил во внутреннюю полость эмиттера не показан. Структуры эмиттера выполнены на поверхности кремниевой пластины. Во второй кремниевой пластине выполнена управляющая интегральная схема.

Задача вывода информации, представленной в графической форме, возникла одновременно с появлением вычислительных систем. Устройства, выполняющие функции вывода графической информации на бумажный и некоторые другие носители, называются принтерами (от англ. print - печать).

Первые модели принтеров фактически явились модернизацией электрических пишущих машинок. Дополненные портами ввода, дешифраторами цифрового кода и устройствами электромагнитного управления для каждой клавиши, принтеры на базе пишущих машин оказались весьма удобными (для своего времени) устройствами и в 60-70 годах получили достаточно широкое распространение. Принтер поддерживал единственный стандартный шрифт, «намертво» отштампованный на литерах рычажного типа, а модели, использующие сменные поворотные головки, например, типа «ромашка» зачастую для смены шрифта требовали выполнения ряда сложных операций. Основным неудобством была «одноязычность» принтера. Однако уже в те годы принтер превосходил по скорости печати и неутомимости любую квалифицированную машинистку.

Принтеры классифицируются по различным основаниям

1. По способу воздействия исполнительных элементов печатающего узла на носитель изображения принтеры подразделяются: ударные и безударные.

2. По способу формирования изображения принтеры подразделяются на устройства с и знакосинтезирующие . Принтерыс монолитным шрифтом (литерные) имеют весьма ограниченное распространение. Это печатающие машины с рычажным или лепестковым литероносителем, подключенные к компьютеру. Знакосинтезирующие принтеры – это ПУ (ударного и безударного типа), воспроизводящие на бумаге буквенный, цифровой и другие символы, а также иллюстрации посредством набора дискретных элементов.

3. По способу получения изображения знакосинтезирующие принтеры подразделяются на следующие основные виды: матричные (игольчатые) , струйные (с жидкими и твердыми чернилами), электрофотографические (лазерные и светодиодные) и с термопереносом красящего материала (термовосковые и сублимационные) .

4. По способу воспроизведения цвета принтеры классифицируются на монохромные и цветные .

Рассмотрим устройство принтеров по способу получения изображений.

Матричный (игольчатый) принтер формирует знаки несколькими иголками, расположенными в головке принтера

Механика подачи бумаги вообще мало изменилась – бумага втягивается с помощью вала; между бумагой и печатающей головкой принтера располагается красящая лента. При ударе иголки по этой ленте на бумаге остается закрашенный след.

Иголки, расположенные внутри головки, обычно приводятся в действие электромагнитами. Головка перемещается по горизонтальным направляющим с помощью шагового двигателя.

В первых игольчатых принтерах в головке принтера находилось 9 иголок, затем появились 18 – игольчатые принтеры. В настоящее время большинство фирм-изготовителей перешли на производство 24 и 32-игольчатых принтеров.

Благодаря горизонтальному движению головки принтера и активизации отдельных иголок напечатанный знак образует как бы матрицу, причем отдельные буквы, цифры и знаки записаны в память принтера (ПЗУ) в виде бинарных кодов. Поэтому головка принтера «знает», какие иголки активизировать чтобы, например, создать за 10 шагов головки букву «К».

Так как напечатанные знаки внешне представляют собой матрицу, а воспроизводит эту матрицу игольчатый принтер, то зачастую его называют матричным принтером.

В 24 и 32-игольчатых принтерах (сегодняшний стандарт матричных принтеров) используется технология последовательного расположения иголок в два ряда по 12 иголок. Вследствие, того, что иголки в соседних рядах сдвинуты по вертикали, точки на распечатке перекрываются таким образом, что их невозможно различить.

Также имеется возможность прохода головки дважды для каждой строки, чтобы знаки пропечатывались ещё раз с небольшим смещением. Изображение буквы, возникающее таким образом, только при тщательном рассмотрении можно распознать как «произведение» игольчатого принтера. Поэтому такое качество печати обозначают как LQ, что является сокращением от Letter Quality (высокое качество). Несколько худшую по качеству печать соответственно обозначает NLQ (Near Letter Quality).

При работе в режиме LQ скорость печати уменьшается незначительно, так как головка печатает при движении в обоих направлениях: как слева направо, так и справа налево.

Матричные (игольчатые принтеры) позволяют получить за один цикл несколько экземпляров документов за счет использования копировальной бумаги.

Устрочного принтера печатающая головка отсутствует, но имеется печатающая планка, которая по всей длине снабжена иголками. Таким образом, при печати изображения матрица, соответствующая строке, полностью переносится на бумагу.

Так как головка принтера не должна двигаться слева направо или справа налево, а строка печатается целиком за один раз, то это конечно же дает существенное преимущество в скорости печати. Такие принтеры выпускаются фирмами Genicom и Dataproducts. Скорость печати достигает 1500 строк в минуту (примерно 20 страниц формата А-4 в минуту).

Игольчатые принтеры оборудованы внутренней памятью (буфером), в которой хранятся, данные, принятые от PC. Объем памяти недорогих игольчатых принтеров составляет от 4 до 64 Кбайт. Хотя, конечно же, существуют модели, имеющие и больший объем памяти (например, принтер Seikosha SP-2415 имеет буфер, равный 175 Кбайт). Для принтеров, как и во всем компьютерном мире, действует правило: чем больше объем памяти, тем лучше.

Работа игольчатого принтера всегда сопровождается шумом. Фирмы-изготовители игольчатых принтеров для уменьшения шума находят различные технические решения. У некоторых принтеров можно включить так называемый "тихий режим". Однако достигается это за счет снижения скорости печати в два раза.

Разрешение для игольчатого принтера играет роль только тогда, когда он работает в графическом режиме, в котором должно точно рассчитываться положение каждой отдельной точки на бумаге. При печати обычных текстовых знаков следует помнить, что для матричных принтеров существенную роль играют и другие факторы, такие как точность позиционирования головки принтера, частота ударов иголок или качество красящей ленты.

Цветной игольчатый принтер

Только сравнительно небольшое число игольчатых принтеров обладает возможностью цветной печати. Это можно объяснить тем, что к моменту появления на рынке первых моделей 24-игольчатых принтеров, способных печатать цветные изображения, цена на цветные струйные принтеры уже существенно снизилась. А качество печати 24-игольчатого принтера с помощью многоцветной красящей ленты не идет ни в какое сравнение с качеством печати на струйном принтере

Основные диагностические признаки матричных (игольчатых) принтеров

1. Штрихи состоят из отдельных точек – окрашенных элементов, являющихся оттисками игл печатающей головки. Дискретная структура штриха символа хорошо заметна, если документ выполнен черновым шрифтом. При печати качественным или графическим шрифтом используется возможность двухпроходной печати, что повышает разрешаемую возможность принтера, но замедляет скорость печати. При этом оттиски игл перестают быть индивидуально различимыми. Остается ступенчатость наклонных и овальных элементов символов, указывающая на их дискретное происхождение.

2. Признаки ударного способа печати. Возможна деформация печатной основы в местах нанесения красителя. Также в зависимости от красителя использованного в красящей ленте, возможна его незначительная диффузия в толщу бумаги (для мастичного красителя) или отсутствия такого проникновения и графитовый блеск (для карбонового красителя).

3. Красящее вещество штрихов непрозрачно для инфракрасных лучей, не обладает люминесцентными свойствами в ультрафиолетовой и красной зонах спектра, копируется органическими растворителями (ацетон, диметилформамид).

Более подробно вопросы диагностики и идентификации матричных (игольчатых) принтеров можно рассмотреть в работе А.В. Пахомова, С.Б. Шашкина и А.В. Гортинского «ТЕХНИКО-КРИМИНАЛИСТИЧЕСКОЕ ИССЛЕДОВАНИЕ ДОКУМЕНТОВ, ИЗГОТОВЛЕННЫХ С ИСПОЛЬЗОВАНИЕМ ЗНАКОСИНТЕЗИРУЮЩИХ ПЕЧАТАЮЩИХ УСТРОЙСТВ».

Струйные принтеры

В конструкциях современных струйных ПУ, подключаемых к ПК, реализован способ дискретной (капельной) печати жидкими (на основе водно-спиртового связующего) или так называемыми твердыми чернилами. Печатающим элементом является форсунка, диаметр выходного канала которой не превышает 0,08 мм. Число форсунок в печатающей головке принтера колеблется у различных моделей от 40 до 256 и выше, например, головка принтера DeskJet 1600 имеет 300 сопел для черных чернил и 416 - для цветных.

Хранение чернил осуществляется двумя методами:

· головка принтера является составной частью патрона с чернилами, замена патрона с чернилами одновременно связана с заменой головки;

· используется отдельный сменный резервуар, который через систему капилляров обеспечивает чернилами головку принтера.

Фирмы-изготовители реализуют различные способы нанесения чернил на бумагу:

· пьезоэлектрический метод;

· метод газовых пузырей;

Все разнообразие современных принтеров можно классифицировать по нескольким основаниям: - по способу воздействия рабочих элементов печатающего узла на носитель изображения: ударные и безударные;

По способу воспроизведения изображений: игольчатые (матричные), электрофотографические, струйные, с термопереносом красящего вещества;

По способности воспроизводить цветные изображения: монохромные и цветные.

Классификация знакосинтезирующих печатающих устройств представлена на рис. 4.2.

Наибольшее значение для решения экспертных задач в отношении документов, изготовленных на принтерах, имеет их классификация по способу воспроизведения изображений.

Рис. 4.2. Классификация знакосинтеризующих печатающих устройств

Игольчатый (матричный) способ печати. Изображение формируется посредством стальных стержней (игл), которые в момент печати наносят точечный удар через машинописную ленту по бумаге. Рабочие иглы имеют круглое сечение и диаметр не более 0,2 мм. В печатающей головке принтера, в зависимости от модели, размещаются от 9 до 24 игл, которые расположены по одной вертикали. Красящая лента принтера размещается в картридже, которая в ходе печатного цикла равномерно перематывается. Печатающая головка укреплена на движущейся слева направо каретке.

Основными диагностическими признаками текстов, выполненных с использованием ударных игольчатых (матричных) принтеров, являются (рис. 4.3):

Незначительный рельеф штрихов, образованных упорядоченными отдельными округлыми элементами одинакового размера;

Размещение красящего вещества в штрихах поверхностное;

В отдельных штрихах просматривается структура красящей ленты;

Красящее вещество штрихов непрозрачно для инфракрасных лучей, не обладает люминесцентными свойствами в ультрафиолетовой и красной зонах спектра, копируется органическими растворителями (ацетон, диметилформамид).

Рис. 4.3. Текст, отпечатанный с помощью игольчатого (матричного) принтера

Электрофотографический способ печати. Важнейшим конструктивным элементом электрофотографической печати является вращающийся фоторецепторный барабан, с помощью которого производится перенос изображения на бумагу. Фотобарабан представляет собой металлический цилиндр, покрытый тонкой пленкой из фотопроводящего полупроводника (обычно оксид цинка). Микроконтроллер, генерирует тонкий световой луч, который, попадая на фотобарабан, засвечивает на нем площадки (точки), и в результате фотоэлектрического эффекта на этих участках изменяется электрический заряд. Таким образом, на фотобарабане возникает копия скрытого изображения в виде разности потенциалов. Затем скрытое изображение проявляется мелкодисперсным порошковым красителем - тонером (минимальный размер частиц 0,005-0,007 мм), частицы которого имеют заряд, противоположный заряду на светочувствительном барабане. Далее полученное изображение (частицы тонера) переносятся на бумагу и затем фиксируются на ней, как правило, термическим способом. Затем фоторецепторный барабан отчищается от остатков тонера и нейтрализуется по заряду.

Устройства, формирующие на фоторецепторе скрытое изображение, подразделяются на лазерные и светодиодные. В лазерных устройствах используется луч лазера, который, отражаясь от вращающегося зеркала (с 3-6 гранями) и пройдя систему линз и отражающих зеркал, попадает на вращающийся фоторецепторный барабан. В светодиодных устройствах роль источника света выполняет светодиод - точечный полупроводниковый элемент, излучающий кванты света под действием приложенного к нему напряжения. Конструктивно светодиоды выполнены в один ряд, образуя так называемую светодиодную линейку.

Цветные электрофотографические принтеры по принципу формирования изображения ни чем не отличаются от монохромных электрофотографических аппаратов, с той лишь разницей, что в результате четырех последовательных прогонов на фотобарабан наносится тонер каждого из четырех цветов.

К признакам электрофотографической печати относятся следующие (рис. 4.4):

Небольшая рельефность штрихов;

Штрихи состоят из мелкодисперсных оплавленных частиц, бли- кующих на свету;

На свободных от текста участках листа бумаги наблюдаются микрочастицы красящего вещества;

При механическом воздействии на штрихи происходит осыпание красочного слоя;

Вещество штрихов черного цвета нерастворимо в воде, непрозрачно в ИК-лучах, при воздействии капли ацетона размягчается.

Способ струйной печати. Струйная печать - это процесс получения изображения, при котором его элементы создаются капельками чернил, вылетающими из сопла со скоростью, достаточной, чтобы преодолеть зазор между соплом и поверхностью, на которой формируется картинка. Струйные технологии разделяются на непрерывную и импульсную. Последняя, в свою очередь, делится на печать твердыми чернилами и жидкими, пьезоэлектрическую и пузырьковую.

Рис. 4.4. Увеличенное изображение знака, выполненного с помощью электрофотографического ЗПУ

В настоящее время наиболее широкое распространение в струйной печати получили технологии с импульсной подачей чернил. В конструкциях современных струйных печатающих устройств, подключаемых к компьютерам и МФУ, реализован способ печати жидкими чернилами, на основе водоспиртового связующего, и так называемыми твердыми чернилами. Печатающим элементом является сопло (форсунка), диаметр выходного канала которой не превышает 0,08 мм. Число форсунок в печатающей головке принтера колеблется у различных моделей от 40 до 256 и выше. Существуют два принципиально разных способа струйной печати жидкими чернилами: пьезоэлектрический и газовых пузырей (последний имеет несколько модификаций).

Пьезоэлектрический основан на свойстве пьезокристаллов, вмонтированных в канал форсунки, деформироваться (изгибаться) под действием электрического импульса. В результате такой деформации кратковременно уменьшается сечение заполненного жидкими чернилами канала, вследствие чего из него выдавливается микрокапля чернил. Такой принцип подачи чернил используется в струйных цветных принтерах марки Epson, Lexmark. Их характерной конструктивной особенностью является раздельное выполнение картриджей с чернилами и печатающей головки. Такое конструктивное решение повышает требования к поддержанию печатающей головки в рабочем состоянии, так как при длительном бездействии принтера (в жаркую сухую погоду до 3-4 недель) чернила в форсунках высыхают, и не всегда их высохший остаток удается удалить, в результате образуется некачественная печать.

В основу способа пузырьковой печати положено термическое воздействие на жидкое красящее вещество принтера. Для этого канал каждой форсунки оборудуется нагревательным элементом, который при пропускании через него тока за несколько микросекунд нагревается до температуры около 500°C. Находящиеся рядом с ним чернила начинают вскипать. Возникающий при этом газовый пузырь выталкивает микрокаплю чернил через выходное отверстие канала. При отключении тока нагревательный элемент быстро остывает, газовый пузырь сжимается, и в печатающем канале форсунки создается пониженное давление, вследствие чего в него втекает новая порция чернил, которая занимает место выдавленной микрокапли.

Такой принцип подачи чернил используется в принтерах марки Сanon и Hewlett Packard. Конструктивно чернильницы с красителем для принтеров обозначенных марок и форсунки выполняются в одном быстро съемном печатающем узле, что позволяет в случае предполагаемого долгого перерыва снять с принтера печатающий узел и заменить его другим.

К основным признакам струйной печати жидкими чернилами относятся (рис. 4.5):

Точечная структура изображения, которая образована совокупностью микроэлементов (капель) по форме близким к окружностям (диаметром 0,1-0,2 мм), окрашенным, в случае полноцветной печати, в цвета растрового набора;

Красящее вещество проникает в толщу бумаги;

Матовость штрихов;

Вещество штрихов либо растворимо в воде, либо только в органических растворителях (ацетон, демитилформамид).

Твердые чернила представляют собой брикеты, которые под действием тепла от нагревательного элемента при температуре свыше 90°C расплавляются. Красящий материал с помощью микронасосов (пьезоэлементов), работающих на принципе струйных принтеров с жидкими чернилами, через форсунки дискретными порциями подается на носитель изображения. После выключения принтера чернила в печатающих элементах затвердевают, что, однако, не приводит к выходу их из строя, так как при последующем включении принтера генерируемое нагревательным элементом тепловое излучение меняет фазовое состояние красящего материала с твердого на жидкое.

Рис. 4.5. Текст, отпечатанный с помощью струйного принтера с жидкими чернилами

Сборка полноцветного изображения в твердочернильных принтерах с 2004 г. стала осуществляться точно так же, как и в цветных электрофотографических, т.е. сначала на промежуточном носителе, в качестве которого используется накопительная лента, а затем с него контактным способом переносится на бумагу или пленку.

К признакам твердочернильных принтеров относятся:

Точечная структура изображения, образованно полусферическими микрокаплями, окрашенными в цвета растрового набора;

Блеск поверхности красящего материала;

По тактильным ощущениям воспринимается как воскоподобное вещество;

Штрихи изображений имеют рельефную фактурность (объемом);

При нагревании штрихов до 100°C они начинают расплавляться. При этом поверхность изображения теряет блеск, а пиксели объем. Красящий материал растекается по бумаге и может проникать в ее внутреннюю структуру.

Термография - это способ копирования, использующий в качестве знакопечатающего материала носители (термоактивную бумагу, либо термокопировальную бумагу или пленку), которые изменяют свои свойства под действием теплового излучения. Исходя из особенностей построения изображения на материалах-носителях, термографический способ печати принято делить на термопечать и печать с термопереносом красящего вещества.

При термопечати изображение возникает вследствие химической реакции, которая протекает в термочувствительном слое бумаги, в результате теплового воздействия на нее со стороны термоголовки печатающего устройства. Термоголовка состоит из множества точечных нагревательных элементов (ИК-светодиодов, электродов), передающих тепловую энергию термобумаге. Нагревательные элементы располагаются в линию вдоль термоголовки с шагом, определяющим разрешение печати.

Признаки термопечати:

Бумага имеет специальное покрытие (матовая или, наоборот, блестящая поверхность);

Под действием тепла, органических растворителей (спирт, ацетон) происходит мгновенное потемнение поверхностного слоя бумаги;

Все штрихи знаков имеют дискретную структуру - состоят из отдельных квадратиков со стороной 0,1-0,2 мм (в зависимости от нагревательных элементов в печатающей головке);

Края штрихов прерывистые, зубчатые.

Группу печатающих устройств с термопереносом красящего материала образуют термовосковые и сублимационные принтеры. Общим для них является использование в качестве красконосителя полимерной ленты. Принцип действия термовосковых принтеров заключается в следующем. Полимерная (лавсановая) лента со стороны нанесенного на нее красящего материала, изготовленного на основе воскоподобного связующего, прилегает к поверхности носителя изображения. С неокрашенной стороны лента нагревается точечным остронаправленным источником тепла до температуры около 80°C, в результате чего красящий материал в точке нагрева переходит в жидкое состояние и адге- зирует к поверхности запечатываемого материала, на которой он, остывая, снова переходит в твердую фазу. Пленка перемещается с помощью лентопротяжного механизма. Матрица нагревательных элементов за 3-4 прохода формирует цветное изображение. Получить этим способом качественные распечатки можно только на материале с гладкой поверхностью. Поэтому в термовосковых принтерах предусмотрена возможность нанесения перед началом печати на поверхность носителя изображения тонкого слоя прозрачного грунта (для этого используется специальный картридж), по которому и осуществляется печать. Распечатанное изображение может быть покрыто прозрачным защитным слоем, для этого картридж с грунтовым покрытием заменяется на так называемый финиш-картридж.

Для термовосковых принтеров выпускаются картриджи с металлизированным красителем (под серебро и золото), а также с белым. Смена картриджей в принтере осуществляется автоматически.

К признакам полноцветной термовосковой печати относятся следующие:

Красящее вещество расположено на поверхности бумаги тонким слоем (в некоторых местах через изображения просматривается основа бумаги);

В наклонно расположенных элементах края штрихов дискретнолинейчатые, ступенчатые, представляют собой ломаную линию, состоящую из горизонтальных и вертикальных линий;

В косопадающем свете наблюдается зеркальный блеск штрихов;

Под воздействием тепла (например, контакт с лампой накаливания) красящее вещество в штрихах размягчается, если был блеск, то он исчезает;

Классификаций печатающих устройств, включающих группу струйных принтеров, ранее было разработано несколько. Разные авторы в разное время предлагали свою версию систематизации данного вида печатающих устройств (С.Б. Шашкин, Н.Н. Шведова и др.). Однако в связи с быстрой сменой поколений этих устройств, а также появлением новых модификаций способа струйной печати имеется потребность в ее уточнении.

Основания предлагаемой классификации струйных принтеров мы делим на криминалистически значимые (используя совокупность которых можно установить модель печатающего устройства и марку чернил) и факультативные (сведения, дающие возможность органам следствия и дознания строить версии о возможностях преступников, совершивших преступление, связанное с использованием струйного принтера).

К криминалистически значимым основаниям можно отнести:

  1. способ печати;
  2. размер капли красящего вещества;
  3. свойства красящих веществ;
  4. свойства бумажно-протяжного механизма;
  5. способ управления печатающим устройством.

К факультативным основаниям относятся:

1) скорость печати;

2) стоимость печатающего устройства;

3) область применения печатающего устройства.

Рассмотрим более подробно каждое из оснований предложенной классификации и раскроем их содержание.

Способ печати. В настоящее время используют два способа струйной печати: струйные принтеры с использованием твердого красителя и струйные принтеры с жидкими чернилами. Струйные принтеры с твердым красителем (phase-change ink-jet) на практике используются реже принтеров с жидкими чернилами из-за высокой себестоимостью отпечатка.

Струйные принтеры с жидкими чернилами можно разделить на устройства непрерывного действия и устройства дискретного действия. Последние, в свою очередь, реализуют пузырьковую технологию с нагреванием чернил и технологию, основанную на действии пьезоэффекта. Обе технологии описаны в литературе, в том числе криминалистической.

Пьезоэлектрический принцип печати позволяет регулировать объем капли, вылетающей из сопла, в пределах 3-6 ступеней и не требует чернил, рассчитанных на высокие температуры. Пузырьковая технология струйной печати реализуется следующим образом. В стенку сопла встроен нагревательный элемент. При подаче электрического импульса температура его резко возрастает. Затем практически все чернила, находящиеся в контакте с нагревательным элементом мгновенно испаряются.

Расширение пара вызывает ударную волну. Под действием избыточного давления капелька чернил буквально «выстреливается» из сопла, после чего чернильный пар конденсируется, пузырек лопается, и в сопле образуется зона пониженного давления, под действием которого новая порция чернил всасывается в сопло.

Важной конструктивной особенностью такого печатающего устройства является простая конструкция сопел, что обеспечивает высокую надежность каждого сопла, уменьшает размер печатающего узла и увеличивает разрешение печати.

Размер капли красящего вещества. Производители принтеров, такие как «НР», «Canon» и др., используют технологию изменения размера капли от 3 до 6 пикалитров, что отражается на качестве получаемых в результате печати текстов и изображений. Фирма-производитель «Epson» предлагает новый тип многослойной пьезоэлектрической головки, которая устраняет сателлиты — брызги от капли красящего вещества, что повышает четкость, в основном, монохромных изображений.

Ключевым моментом этой технологии является возвратное движение мениска, которое призвано обеспечивать обратное втягивание капелек-сателлитов, формирующихся при вылете основной капли. Эта процедура, осуществляемая с помощью активного менискового контроля, и есть его главное достоинство и одновременно технологическая роль при печати. Иными словами, предназначение менискового контроля, избавляющего от возникновения вредных сателлитов или формирования капель неправильной формы, как раз состоит в том, чтобы сразу после образования, отрыва и вылета основной капли из дюзы произвести резкое втягивание диафрагмы.

Благодаря этому осуществляется остановка вибрации чернильной массы, в том числе и на срезе сопла дюзы печатающей головки, а также происходит втягивание излишков выплеснувших чернил обратно в сопло. Поэтому капли-спутники просто не успевают окончательно сформироваться и не сопровождают основную чернильную каплю в полете. Благодаря вышеописанной технологии достигаются следующие преимущества при печати: траектория капли не нарушается; позиционирование капли на бумаге становится предельно точным; капля имеет правильную сферическую форму; точка на бумаге имеет правильную форму; отсутствует «чернильный туман» на изображении. Таким образом, размер капли может быть дифференцирующим признаком при установлении технологии реализации струйной печати и модели принтера.

В настоящее время у большинства моделей струйных принтеров размер печатающей точки является фиксированным. Однако некоторые модели (например, выпускаемые фирмами Canon и Epson) используют печатающую головку, имеющую сопла двух диаметров, вследствие чего отпечатанная точка может иметь два фиксированных размераШашкин С.Б. Цветные струйные принтеры с жидкими чернилами как объект идентификационного исследования // Информатика в судебной экспертизе: сб. трудов. Саратов: СЮИ МВД России, 2003.Шашкин С.Б., Соклакова Н.А., Тюрина Н.В. Некоторые аспекты криминалистического исследования текстов, отпечатанных на капельно-струйных принтерах. // Криминалистика в XXI веке: сб. науч. работ. М.: ГУ ЭКЦ МВД РФ, 2001..

Технический прогресс в области цветных знакоситезирующих печатающих устройств привел к появлению принтеров с жидким красителем на основе вводно-спиртового связующего. При этом формирование полноцветного изображения осуществляется в соответствии с принципом субстрактивного синтеза цвета. В качестве базовых обычно используются чернила четырех цветов: триадных (голубого, пурпурного, желтого) и черного. В последнее время расширилась палитра применяемых цветов до шести (картриджи принтеров серии Epson Stule Photo дополнительно к триадным имеют бледно-голубые и бледно-пурпурные чернила)Шашкин С.Б., Воробьев С.А. К проблеме идентификации струйных знакоситнезирующих устройств // Экспертная практика. 2001. № 50. или восьми (например, модели принтеров HP PhotoSmart 8453 и Canon PIXMA iP8500).

Красочные точки располагаются в виде параллельных линий, в одном месте может быть от 2 до 16 капель красок 4 цветов в различных сочетанияхМедведев А.С. Справочник по видам и способам печати для экспертов ЭКП. М., 2003. Ч. 5. Некоторые печатающие устройства..

Свойства красящих веществ. Спектр свойств красящих веществ струйных принтеров достаточно широк, и эта проблема пока не нашла отражения в криминалистической литературе. Изучены эти свойства могут быть разными методами. Например, микроскопическое исследование морфологии штрихов позволят дифференцировать относительно вязкое красящее вещество принтеров с термоэлектрической головкой от красящего вещества принтеров с пьезоэлектрической головкой.

Все чернила для струйных принтеров делятся на две большие категории: dye-based (на жидком красителе) и pigment based (на твердом или пигментном красителе).

Свойства бумажно-протяжного механизма. Их можно охарактеризовать по размеру используемого листа бумаги, размеру полей при печати, способности устройства печатать без полей, а также по видам бумаги. В зависимости от размера используемого листа бумаги различают принтеры форматов А4, А3, А2, А1, А0. Принтеры форматов А2, А1 и АО принято называть плоттерами.

В настоящее время некоторые модели принтеров оснащены функцией печати на нерабочей поверхности лазерных дисков. Например, принтер «PREDATOR — 845CD» предназначен для высококачественной полноцветной прямой печати на компакт-дисках с помощью термоструйной технологии разрешением до 1200 dpi. Минимальный объем капли составляет 5 пикалитров. Данная технология позволяет сразу же после печати производить влагозащитное покрытие. Для получения высококачественных фотоотпечатков принтеры «НР» используют технологию, которая позволяет наносить в одну точку фотоизображения до 29 капель цветных чернил, что существенно расширяет диапазон воспроизводимых цветов и уменьшает зернистость изображения.

Способ управления печатающим устройством. Можно выделить три группы печатающих устройств: управляемые посредством персонального компьютера, многофункциональные печатающие устройства (возможность печати, минуя персональный компьютер, — принтер/сканер/копир) и устройства с возможностью печати с карт памяти других устройств (фотоаппаратов, флеш-карт и т.д.).

Печатающие устройства для ЭВМ могут работать только в комплекте с ЭВМ, используя соответствующее (в основном, стандартное) программное обеспечение. У них полностью отсутствует какой-либо оригиналодержатель. Конструктивно ряд печатающих устройств для ЭВМ чрезвычайно разнообразен — от миниатюрных «карманных» устройств для ноутбуков до специализированных, с шириной запечатываемого поля до 25 м.

Многофункциональные копировально-множительные устройства занимают промежуточное положение между устройствами непосредственного копирования и печатающими устройствами для ЭВМ. Как правило, это высокотехнологичные устройства, дающие возможность выполнять не только непосредственное копирование (оригинал — копия), но и имеющие встроенный микропроцессор, позволяющий через стандартный интерфейс подключаться к ЭВМ. Поэтому ввод изображений может производиться не только с оригиналодержателя (или слайд-проектора) через оптическую систему, но и в электронном (цифровом) виде.

К многофункциональным копировально-множительным устройствам также следует отнести устройства, у которых функция копирования не является единственной. Следует заметить, что копии, выполненные на разных по конструктивным особенностям устройствах, но реализующих одинаковый способ воспроизведения, обладают, как правило, одинаковым набором характерных признаков. Таким образом, в большинстве случаев определить конструктивные особенности копировально-множительного устройства возможно только в вероятностной формеОпределение вида копировально-множительных устройств, используемых при подделке денежных билетов, ценных бумаг и документов: методич. рекомендации / Е.В. Стариков и др. М.: ЭКЦ МВД России, 1999..

Факультативные основания классификации принтеров, такие как скорость печати, стоимость устройства и область применения принтера, дают возможность органам следствия и дознания построить версии о личности преступника, а именно предположить, какими денежными средствами он мог располагать, сколько времени могло понадобиться злоумышленнику для организации преступления и его реализации и т.д.


Существует несколько подходов к решению вопроса проверки денежных билетов на предмет подлинности. Появившиеся в последнее время тестеры подлинности валют определили один из них: безграничное доверие к результатам машинной проверки. Однако, как показывает практика, тестеры способны определять только наиболее грубые типы подделок, поскольку проверяются обычно один — два параметра, в лучшем случае — три. Судить же о подлинности или поддельности денежного билета лишь только по одному или двум параметрам практически невозможно. Сегодня, к сожалению, машина еще не может заменить человека на этом направлении. Но умелое использование тестеров и некоторых простых приборов в комплексе с человеческими навыками и знаниями характерных особенностей денежных билетов позволяет достаточно эффективно выявлять фальшивки. Именно с этой точки зрения и преподносится весь дальнейший материал.

Денежные билеты представляют собой изделия полиграфического производства с несколько специфическими свойствами. Основные материалы, используемые в полиграфии — бумага и краски. Но материалы, используемые для изготовления денежных билетов, имеет ряд характерных свойств.

Бумага

Для производства денежных билетов используется бумага, отличающаяся от потребительской бумаги, применяемой для выпуска обычной полиграфической продукции. Она не содержит оптического отбеливателя и поэтому в фильтрованном ультрафиолетовом свете выглядит темной. Бумага же общего назначения будет люминесцировать голубым или ярко-голубым светом. Это хорошо заметно, даже если осветить боковую сторону пачки денежных билетов. Однако, следует заметить, что если денежный билет попал в раствор стирального порошка (например при случайной стирке), то бумага адсорбирует оптический отбеливатель и будет люминесцировать в УФ-свете. Бумага, за очень редким исключением, имеет двутоновый водяной знак (содержит чередующиеся более темные и более светлые участки, отличающиеся от остальной части денежного билета), хорошо видимый на просвет. Он обязательно должен иметь слегка размытые, нечеткие контуры. Это связано с тем, что толщина бумаги изменяется плавно. Если банкнота имеет водяной знак с четкими контурами и состоящий только из темных или светлых участков, то обязательно нужно проверить наличие остальных элементов защиты. Часто в бумагу денежных билетов вводят цветные защитные волокна, которые, как правило, люминесцируют под действием ультрафиолета. Кроме того, достаточно широко распространены пластиковые, металлизированные и металлические нити, иногда выходящие на поверхность денежного билета с лицевой стороны, так называемые «плавающие».

Краски

Краски, используемые при изготовлении денежных билетов, отличаются от обычных полиграфических. Они более устойчивы к действию различных химических веществ и не изменяют свой цвет. В краски вводится ферромагнитный пигмент, который вызывает срабатывание различных тестеров. Очень распространено использование пигментов, люминесцирующих под действием ультрафиолета (свечение красного, зеленого и желтого цветов). Под действием различных химических веществ (стиральные порошки, растворы, используемые в химчистке, растворители) краски могут частично изменять первоначальный цвет, а иногда и вымываются компоненты, светящиеся под действием УФ-излучения.

Полиграфическое воспроизведение изображений

Наиболее четкие и контрастные изображения на денежных билетах выполняются способом глубокой металлографской печати, который позволяет получать изображения с красочным слоем достаточно большой толщины. При небольшом увеличении по краям штрихов видны незначительные растеки краски между бумажными волокнами. Толщина красочного слоя в середине штриха больше, чем по краям. Защитная сетка, розетки на незапечатанном поле отпечатаны методом ирисовой печати, позволяющей получать плавные переходы одного цвета в другой. Этот способ печати является одной из разновидностей плоской офсетной печати. При небольшом увеличении хорошо видно, что красочный слой небольшой толщины. Через него просматриваются бумажные волокна. Изображение серийного номера наносится при помощи нумератора, который представляет собой печатную форму высокой печати. Если серийный номер внимательно рассмотреть при небольшом увеличении (8 — 10 5х 0), можно заметить ряд признаков:
- по краям штрихов четко выделяется красочный бортик;
- края изображений ровные, четкие;
- наличие деформации бумаги в виде следов давления печатающих элементов нумератора.

Все изображения на денежных билетах выполняются только штрихами различной ширины. Если в гильошированной рамке вместо тонких штрихов наблюдается сплошная заливка краской или изображения состоят из мелких точек трех цветов -- это должно Вас насторожить. В определенных местах денежного билета находится микропечать — мелкие повторяющиеся тексты, которые в большинстве случаев можно рассмотреть при небольшом увеличении. Широко распространены рисунки для совмещения. Одна часть изображения находится на лицевой стороне, а другая на оборотной. При рассмотрении на просвет они должны точно совпадать и (или) складываться в какое-либо изображение. В тонких линиях гильошированной рамки иногда находится латентное (скрытое) изображение, которое видно только в косопадающем свете. Относительно редко встречаются кинеграммы, представляющие собой красочные, переливающиеся изображения, которые можно рассмотреть только частями, поворачивая денежный билет под определенными углами. Данные изображения практически не поддаются подделке.

Как определить подлинность денежного билета

В том случае, если к Вам попал денежный билет, вызывающий сомнение в подлинности или у Вас отсутствует информация по данному виду денежных билетов, то нужно проделать следующее:
- проверить соответствие портрета на банкноте обозначенному достоинству;
- проверить наличие двутонового водяного знака (на долларах США водяные знаки отсутствуют);
- найти защитные волокна, которые должны находиться не только на поверхности, но и внутри бумажной массы;
- проверить наличие защитной нити. Если она «плавающая», то обязательно исследовать денежный билет в проходящем свете (нить должна выглядеть сплошной темной полосой);
- проверить качество воспроизведения мелких элементов;
- наиболее контрастные изображения должны быть рельефными;
- проверить точное совпадение рисунков для совмещения;
- все реквизиты должны быть выполнены только штрихами различной ширины;
- все изображения на денежном билете должны быть четкими, цветовые переходы — плавными;
- пользуясь магнитным датчиком, определить наличие ферромагнитного пигмента в краске (серийный номер, изображения темного цвета);
- убедиться, что бумага денежного билета под действием ультрафиолетового излучения не светится;
- под действием УФ-излучения должны светиться волокна и/или кружочки (плашки), а также отдельные изображения, которые не были видны при обычном освещении.

Виды подделки денежных билетов

На практике встречаются два способа подделки банкнот. Один из них — частичная подделка. В этом случае некоторые реквизиты, обозначающие достоинство денежного билета, заменяются каким-либо способом на реквизиты билета большего достоинства. Переделка банкнот выполняется фальшивомонетчиками вручную с использованием общедоступных средств и материалов. Реквизиты, обозначающие достоинство денежного билета, удаляются механическим путем или закрашиваются. Новые изображения рисуются вручную, надпечатываются способом высокой или трафаретной печати. В некоторых случаях недостающие изображения вырезаются из одной банкноты и наклеиваются на другую. Этот вид подделки легко распознать, поскольку фальшивомонетчики таким способом не могут достичь удовлетворительных результатов.

Другой способ — изготовление полностью поддельных денежных билетов. В этих случаях применяются нерегламентированные материалы и технологические процессы. Это может быть как грубая подделка, так и выполненная на достаточно высоком техническом уровне, имеющая имитацию водяного знака, защитных волокон и нитей и по тактильным свойствам похожая на подлинный денежный билет. Качество изготовления фальшивых денежных билетов зависит от технического оснащения, профессиональных навыков фальшивомонетчика и условий, в которых предполагается сбыт.

Способы печати, применяемые для изготовления поддельных денежных билетов.

Формы высокой печати имеют пространственное разделение печатающих и пробельных элементов: рельефные печатающие элементы находятся в одной плоскости, а пробельные участки углублены. Так как все печатающие элементы расположены в одной плоскости, то в процессе печатания они покрываются равномерным по толщине слоем краски и приводятся в контакт с запечатываемой поверхностью (вдавливаются в бумагу), в результате чего на оттиске остаются следующие характерные признаки:
- наличие следов давления печатающих элементов, выражающиеся в деформации бумаги в местах красочных изображений;
- бумажные волокна полностью закрыты слоем краски;
- по контурам изображений имеется красочный бортик, возникший в результате растискивания краски.

Плоская офсетная печать

Данный способ печати предполагает использование промышленного оборудования и следовательно позволяет получить достаточно большое количество «продукции». Процесс печатания основан на избирательном смачивании пробельных элементов водой (или водными растворами), а печатающих — краской на масляной основе. В качестве формных материалов для изготовления печатных форм используют металлические пластины. Пригодность того или иного металла определяется его физико-химическими и механическими свойствами. В зависимости от технологии изготовления печатных форм печатающие элементы могут быть созданы непосредственно на формном материале, либо на промежуточном (копировальном или лаковом) слое. С форм плоской печати можно производить печатание прямым и офсетным способами. Прямой способ, часто называемый литографским, малопроизводителен и в настоящее время почти не используется. В офсетной печати краска передается на бумагу через промежуточное резиновое полотно, благодаря которому резко снижается давление на печатную форму, что уменьшает ее износ и позволяет увеличить скорость печатания. Используется большое разнообразие печатных форм, которые по способу изготовления можно условно разделить на две большие группы: фотомеханические и электрофотографические. Фотомеханические формы получают копированием на формный материал покрытый светочувствительным слоем негатива или позитива (в зависимости от типа копировального слоя и разновидности печатной формы). Электрофотографические печатные формы получают прямым способом — непосредственным копированием оригинала на формный материал, либо косвенным — перенося изображение с промежуточной пластины на формный материал.

Наиболее характерные признаки способа плоской офсетной печати:
- равномерное заполнение штриха краской;
- толщина красочного слоя небольшая, сквозь него просматриваются бумажные волокна;
- отсутствуют следы давления печатающих элементов (нет следов деформации бумаги);
- края штрихов имеют ровную, немного волнистую границу.

Достаточно редко встречается способ глубокой печати, позволяющий получать изображения с достаточно толстым слоем краски, образующим рельеф в местах изображений. Печатные формы имеют пространственное разделение пробельных и печатающих элементов. Печатающие элементы различной глубины, в большинстве случаев, представляют собой мелкие ячейки, разделенные между собой тонкими перегородками. Пробельные элементы возвышены и находятся в одной плоскости. В процессе печатания краска наносится в избыточном количестве на всю поверхность печатной формы, а затем специальным приспособлением удаляется с пробельных элементов. В зависимости от глубины печатающих элементов штрихи изображения имеют различную толщину красочного слоя. На оттиске, полученном этим способом печати, имеются следующие признаки:
- по ширине штриха краска распределена неравномерно в середине она лежит более толстым слоем, чем по краям;
- изображения находятся на выпуклой поверхности бумаги;
- штрихи имеют ровные края.

При изготовлении подлинных денежных билетов используется способ глубокой металлографской печати, который является одной из разновидностей глубокой печати. Края штрихов имеют неровную границу из-за растеков краски между бумажными волокнами (при печати используются вязкие краски, давление между печатным и формным цилиндрами около 2 тонн). Очень редко для изготовления поддельных денежных билетов используется трафаретная печать. Формы трафаретной печати представляют собой сетки, натянутые на раму. Пробельные элементы закрыты слоем, через который не проходит печатная краска. Печатающие элементы открыты и через них краска специальным устройством продавливается на запечатываемую поверхность.

Этот способ печати имеет следующие характерные признаки:
- все изображения состоят из красочных бугорков;
- красочный слой достаточно большой толщины;
- изображения выглядят объемными;
- мелкие тексты и изображения воспроизводятся со значительными искажениями или отсутствуют.

Струйная печать

Красочное изображение формируется непосредственно на запечатываемой поверхности каплями краски из системы сопел. В настоящее время широкое распространение получили периферийные устройства для ПЭВМ работающие по данному принципу. Более широко распространены принтеры, использующие водо — или спирторастворимые краски, которые хорошо копируются. Существуют модели, использующие жидкие полиграфические красители и краски на воскоподобной основе разогреваемые до жидкого состояния перед началом работы. Под микроскопом видно, что все изображения состоят из мелких хаотично расположенных точек трех (желтого, пурпурного и голубого) или четырех (те же + черный).

Электрофотография

Электрофотография базируется на свойстве фотопроводников изменять свои электрические параметры под действием света. Поверхность фотопроводника равномерно заряжается статическим электричеством и на нее с помощью оптической системы проецируется изображение или оно построчно записывается лазерным лучом. Участки фоторецептора, на которые воздействовал свет, теряют электрический заряд. На освещенных участках заряд сохраняется. Скрытое электростатическое изображение проявляется электрографическим порошком (тонером). Для этого частицам порошка сообщается заряд, противоположной полярности по сравнению с зарядом скрытого изображения. Частицы порошка притягиваются к заряженным участкам фоторецептора, делая изображение видимым. Порошковое изображение переносится на бумагу и закрепляется на ней.

Признаки фоторецептора. Электрофотографические аппараты можно идентифицировать по материалу фоторецептора (селен, сульфид кадмия или органический фотопроводник). Штрих изображения, полученного на селеновом слое, имеет в широких участках плохое заполнение центральной части порошком (краевой эффект). На поверхности копии большое количество точек — марашек. Копии полученные на органическом фотопроводнике или сульфиде кадмия имеют малое количество точек — марашек и равномерное распределение порошка по штриху.

Признаки способов проявления скрытого изображения. От способа проявления, в немалой степени, зависит качество получаемых копий, кроме того каждый из способов имеет свои характерные особенности выявляемые при микроскопическом исследовании объекта.

Каскадный способ:
- некачественное воспроизведение полутоновых изображений;
- наличие следов от носителей в виде точечных вмятин, либо самих носителей (стеклянных шариков).

Магнитная кисть:
- копия чистая, точки — марашки отсутствуют;
- качественно воспроизводятся полутоновые изображения и одновременно большие сплошные участки изображений;
- магнитный носитель может переходить с тонером на копию и закрепляться на ней, что вызывает срабатывание датчиков на ферромагнитный пигмент.

Аэрозольный способ (пылевое облако):
- отсутствие краевого эффекта;
- высокая разрешающая способность;
- отсутствие точек — марашек на копии.

Способы закрепления изображения.

Термосиловое закрепление изображений: там, где бумага полностью покрыта слоем тонера, расположены участки с ровной, матовой поверхностью. Места расположенные ниже этих участков имеют гладкую блестящую поверхность. Это объясняется тем, что для закрепления изображения копия проходит между двумя разогретыми валиками. Электрографический тонер расплавляется и фиксируется на поверхности бумаги.

При термическом закреплении, копия проходит под ИК — лампой. В этом случае тонер расплавляется и застывает без какого-либо механического воздействия, образуя на всех участках гладкий блестящий слой.

Цветная электрофотография.

На аналоговом цветном ксероксе изображения получаются по тому же принципу, что и в обычном черно — белом. Отличие заключается в том, что оригинал экспонируется трижды через различные светофильтры. Каждое цветоделенное изображение проявляется тонером одного из трех основных цветов (желтого, пурпурного и голубого), при их наложении получается полноцветное изображение. На копии сохраняются все признаки, характерные для обычной черно — белой ксерокопии. На аппарате с цифровой обработкой изображения так же, с использованием светофильтров, получают три цветоделенные картинки. Различие заключается в том, что изображение считывается построчно (например, с шагом 60 мкм) и сведения об освещенности отдельных точек изображения поступают в микропроцессор. Далее изображение в цифровом виде поступает в блок обработки, оттуда — в печатающую лазерную систему, как и в обычном лазерном принтере (в настоящее время не существует методики позволяющей отличить цифровой ксерокс от цветного лазерного принтера). В печатающем узле лазерный луч отклоняется быстро вращающимся полигонным (многранным) зеркалом и построчно экспонирует светочувствительный цилиндр. Интенсивность лазерного луча изменяется в соответствии с информацией яркости оригинала. После того как закончен процесс записи изображения, к цилиндру подходит кассета с тонером соответствующего цвета и идет обычный процесс проявления и переноса изображения на бумагу. Наложением одноцветных изображений получается полноцветная копия. Пpи небольшом увеличении видно, что все изобpажения состоят из отдельных линий. Некоторые модели цветных копировально-множительных аппаратов с лазерным воспроизводящим узлом оставляют на своих копиях скрытую метку тонером желтого цвета. Эта метка хорошо видна в УФ-свете. Аппараты марок «Canon», «Kodak», «Agfa» выпускаются одной фирмой, производятся на одном предприятии и различаются только программным обеспечением. Они оставляют на своих копиях узор, напоминающий защитную сетку из мелких точек, выполненных тонером желтого цвета.

По имеющейся проверенной информации метку ставят аппараты марки «Canon» моделей CLC-350, CLC-550; марки «Kodak» моделей ColorEdge 1525+ и 1550+. Аппараты фирмы «Rank Xerox» оставляют метку в виде локальных групп точек (матрица примерно 8 х 15 точек), расположенных в шахматном порядке. По проверенной информации метку оставляют модели «Xerox 5765», «Xerox 4235». По информации из достаточно надежного источника, цветные копировально-множительные аппараты фирмы «Minolta» ставят метку по структуре похожую метку аппаратов «Rank Xerox». Удалось выяснить, что фирма «Canon» выпускает аппарат который по метке определяет модель, марку и заводской номер аппарата выполнившего копию. Фирма «Rank Xerox» выпускает программное обеспечение позволяющее расшифровать информацию содержащуюся в метке.

Будем надеяться, что в обозримом будущем экспертно-криминалистические подразделения возьмут на вооружение эту новинку и с помощью этого оборудования смогут решать вопросы по расшифровке закодированной информации содержащейся в метке.