Интернет. Безопасность. Программы. Полезные советы

Расчет сопротивления затвора полевого транзистора. Управление силовыми ключами MOSFET и IGBT. Драйверы MOSFET ключей

В настоящее время в качестве силовых ключей большой и средней мощности применяются в основном MOSFET и IGBT транзисторы. Если рассматривать эти транзисторы как нагрузку для схемы их управления, то они представляют собой конденсаторы с ёмкостью в тысячи пикофарад. Для открытия транзистора, эту ёмкость необходимо зарядить, а при закрывании – разрядить, и как можно быстрее. Сделать это нужно не только для того, чтобы ваш транзистор успевал работать на высоких частотах. Чем выше напряжение на затворе транзистора, тем меньше сопротивления канала у MOSFET или меньше напряжение насыщения коллектор-эмиттер у IGBT транзисторов. Пороговое значение напряжения открытия транзисторов обычно составляет 2 – 4 вольта, а максимальное при котором транзистор полностью открыт 10-15 вольт. Поэтому следует подавать напряжение 10-15 вольт. Но даже в таком случае ёмкость затвора заряжается не сразу и какое-то время транзистор работает на нелинейном участке своей характеристики с большим сопротивлением канала, что приводит к большому падению напряжения на транзисторе и его чрезмерному нагреву. Это так называемое проявление эффекта Миллера.

Для того чтобы ёмкость затвора быстро зарядилась и транзистор открылся, необходимо чтобы ваша схема управления могла обеспечить как можно больший ток заряда транзистора. Ёмкость затвора транзистора можно узнать из паспортных данных на изделие и при расчете следует принять Свх = Сiss.

Для примера возьмём MOSFET – транзистор IRF740. Он обладает следующими интересующими нас характеристиками:

Время открытия (Rise Time — Tr) = 27 (нс)

Время закрытия (Fall Time — Tf) = 24 (нс)

Входная ёмкость (Input Capacitance — Сiss) = 1400 (пФ)

Максимальный ток открытия транзистора рассчитаем как:

Максимальный ток закрытия транзистора определим по тому же принципу:

Так как, обычно мы используем для питания схемы управления 12 вольт, то токоограничивающий резистор определим используя закон Ома.

То есть, резистор Rg=20 Ом, согласно стандартному ряду Е24.

Заметьте, что управлять таким транзистором напрямую от контроллера не получится, введу того, что максимальное напряжение, которое может обеспечить контроллер, будет в пределах 5 вольт, а максимальный ток в пределах 50 мА. Выход контроллера будет перегружен, а на транзисторе будет проявляться эффект Миллера, и ваша схема очень быстро выйдет из строя, так как кто-то, или контроллер, или транзистор, перегреются раньше.
Поэтому необходимо правильно подобрать драйвер.
Драйвер представляет собой усилитель мощности импульсов и предназначен для управления силовыми ключами. Драйверы бывают верхнего и нижнего ключей в отдельности, либо объединенные в один корпус в драйвер верхнего и нижнего ключа, например, такие как IR2110 или IR2113.
Исходя из информации изложенной выше, нам необходимо подобрать драйвер, способный поддерживать ток затвора транзистора Ig = 622 мА.
Таким образом, нам подойдёт драйвер IR2011 способный поддерживать ток затвора Ig = 1000 мА.

Так же необходимо учесть максимальное напряжение нагрузки, которое будут коммутировать ключи. В данном случае оно равно 200 вольт.
Следующим, очень важным параметром является скорость запирания. Это позволяет устранить протекание сквозных токов в двухтактных схемах, изображенной на рисунке ниже, вызывающие потери и перегрев.

Если вы внимательно читали начало статьи, то по паспортным данным транзистора видно, что время закрытия должно быть меньше времени открытия и соответственно ток запирания выше тока открытия If>Ir. Обеспечить больший ток закрытия, можно уменьшив сопротивление Rg, но тогда также увеличится и ток открытия, это повлияет на величину коммутационного всплеска напряжения при выключении, зависящего от скорости спада тока di/dt. С этой точки зрения повышение скорости коммутации является в большей степени негативным фактором, снижающим надежность работы устройства.

В таком случае воспользуемся замечательным свойством полупроводников, пропускать ток в одном направлении, и установим в цепи затвора диод, который будет пропускать ток запирания транзистора If.

Таким образом, отпирающий ток Ir будет протекать через резистор R1, а запирающий ток If — через диод VD1, а так как сопротивление p – n перехода диода намного меньше, чем сопротивление резистора R1, то и If>Ir. Для того чтобы ток запирания не превышал своего значения, последовательно с диодом включим резистор, сопротивление которого определим пренебрегая сопротивлением диода в открытом состоянии.

Возьмем ближайший меньший из стандартного ряда Е24 R2=16 Ом.

Теперь рассмотрим, что же обозначает название драйвера верхнего и драйвера нижнего ключа.
Известно, что MOSFET и IGBT транзисторы управляются напряжением, а именно напряжением заствор-исток (Gate-Source) Ugs.
Что же такое верхний и нижний ключ? На рисунке ниже приведена схема полумоста. Данная схема содержит верхний и нижний ключи, VT1 и VT2 соответственно. Верхний ключ VT1 подключен стоком к плюсу питания Vcc, а истоком к нагрузке и должен открываться напряжением приложенным относительно истока. Нижний же ключ, стоком подключается к нагрузке, а истоком к минусу питания (земле), и должен открываться напряжением, приложенным относительно земли.

И если с нижним ключом все предельно ясно, подал на него 12 вольт – он открылся, подал на него 0 вольт — он закрылся, то для верхнего ключа нужна специальная схема, которая будет открывать его относительно напряжения на истоке транзистора. Такая схема уже реализована внутри драйвера. Все что нам нужно, это добавить к драйверу бустрептную ёмкость С2, которая будет заряжаться напряжением питания драйвера, но относительно истока транзистора, как это изображено на рисунке ниже. Именно этим напряжением и будет отпираться верхний ключ.

Данная схема вполне работоспособна, но использование бустрептной ёмкости позволяет ей работать в узких диапазонах. Эта ёмкость заряжается, когда открыт нижний транзистор и не может быть слишком большой, если схема должна работать на высоких частотах, и так же не может быть слишком маленькой при работе на низких частотах. То есть при таком исполнении мы не можем держать верхний ключ бесконечно открытым, он закроется сразу после того как разрядится конденсатор С2, если же использовать ёмкость побольше, то она может не успеть перезарядится к следующему периоду работы транзистора.
Мы не раз сталкивались с данной проблемой и очень часто приходилось экспериментировать с подбором бустрептной ёмкости при изменении частоты коммутации или алгоритма работы схемы. Проблему решили со временем и очень просто, самым надежным и «почти» дешевым способом. Изучая Technical Reference к DMC1500, нас заинтересовало назначение разъёма Р8.

Почитав внимательно мануал и хорошо разобравшись в схеме всего привода, оказалось, что это разъём для подключения отдельного, гальванически развязанного питания. Минус источника питания мы подключаем к истоку верхнего ключа, а плюс ко входу драйвера Vb и плюсовой ножке бустрептной ёмкости. Таким образом, конденсатор постоянно заряжается, за счет чего появляется возможность держать верхний ключ открытым на столько долго, на сколько это необходимо, не зависимо от состояния нижнего ключа. Данное дополнение схемы позволяетреализовать любой алгоритм коммутации ключей.
В качестве источника питания для заряда бустрептной ёмкости можно использовать как обычный трансформатор с выпрямителем и фильтром, так и DC-DC конвертер.

Включение IGBT производится подачей на затвор положительного напряжения (как правило, V G(on) = +15 B), типовое значение напряжения выключения находится в диапазоне V G(off) = -5…-15 В. При определенных величинах V G(on) /V G(off) динамические характеристики ключа могут быть заданы резисторами, установленными в цепи затвора и ограничивающими его ток I G (см. рис. 1, 2).

Рис. 1.


Рис. 2. А, Б — ограничение тока включения/выключения с помощью резисторов R G(on) , R G(off) , В — напряжение V GE и ток затвора I G

С помощью подбора номиналов R G(on) /R G(off) можно изменить время переключения, уровень динамических потерь и коммутационных перенапряжений, а также ряд других параметров, включая состав спектра электромагнитных помех. Таким образом, выбор импеданса цепи управления затвором — один из важнейших этапов проектирования, требующий самого пристального внимания.

Величины емкостей затвора зависят от напряжения «коллектор — эмиттер» V CE IGBT, поэтому они изменяются в процессе его коммутации. Соответствующие графики зависимости Cies, Coes, Cres от V CE приводятся в технических характеристиках силовых модулей. Импеданс цепи управления, ограничивающий пиковое значение тока затвора I G в моменты включения и выключения, определяет время перезаряда входных емкостей. На рисунке 2а и 2б показаны цепи протекания токов при использовании раздельных резисторов линий включения и выключения R G(on) /R G(off) , форма тока затвора I G при подаче импульса управления V GE приведена на рисунке 2в.

При уменьшении значений R G(on) /R G(off) снижается постоянная времени цепи перезаряда, соответственно уменьшается время переключения t R /t F и уровень динамических потерь E SW . Несмотря на положительный эффект от снижения рассеиваемой мощности, увеличение скорости спада тока ведет к опасному росту уровня коммутационных перенапряжений V stray , вызванных наличием распределенной индуктивности L S силовых шин звена постоянного тока: V stray = L S × di/dt.

Наглядное представление о данном эффекте дают эпюры, приведенные на рисунке 3.

Рис. 3. Рост коммутационного перенапряжения V stray при увеличении di/dt

Затемненная область графиков, являющаяся произведением тока коллектора I C на напряжение V CE в течение времени выключения, представляет собой энергию потерь E off .

При неудачной конструкции DC-шины и большом значении L S всплеск напряжения V stray способен вывести силовой ключ из строя. Особенно опасным процесс становится в режиме отключения IGBT при коротком замыкании (КЗ), когда величина di/dt максимальна. Уровень V stray может быть снижен за счет выбора большего номинала резистора R Goff (15 Ом вместо 10 Ом, как показано на рисунке). Именно поэтому в некоторых драйверах IGBT (например, SKYPER 32PRO) реализован режим плавного отключения SSD (Soft Shut Down), при котором запирание IGBT осуществляется через отдельный резистор R G(off) большого номинала. Естественной платой за это является увеличение энергии потерь, поэтому при использовании современных типов IGBT и корректной топологии DC-шины применение режима SSD не рекомендуется.

Следует также отметить, что увеличение скоростей переключения, приводящее к росту di/dt и dv/dt, повышает и уровень излучаемых преобразователем электромагнитных помех (EMI). В таб-лице 1 показано, как изменение величины резистора затвора влияет на основные динамические характеристики IGBT.

Таблица 1. Влияние резистора затвора на динамические свойства IGBT

Динамические характеристики RG- RG¯
Время включения, t on
Время выключения, t off
Энергия включения, Е on
Энергия выключения, Е off
Пиковый ток включения (IGBT)
Пиковый ток выключения (диод)
Скорость изменения напряжения, dv/dt
Скорость изменения тока, di/dt
Уровень перенапряжения при коммутации, V stray
Уровень электромагнитных помех (EMI)

Недавно компания SEMIKRON выпустила на рынок четвертое поколение модулей на базе кристаллов IGBT Trench 4 и быстрых диодов CAL 4 . Одним из основных достоинств новых модулей является пониженная почти на 30% скорость изменения тока di/dt при меньшем (примерно на 20%) значении энергии потерь. Благодаря этому применение новых ключей позволяет не только повысить эффективность преобразования, но и улучшить электромагнитную совместимость и снизить риск пробоя в аварийных ситуациях.

Динамические характеристики оппозитного диода IGBT также зависят от номинала резистора затвора и во многом определяют его минимальное значение. Скорость включения транзистора не должна превышать скорости обратного восстановления диода: снижение величины R G и соответствующее увеличение diC/dt приводит не только к росту уровня перенапряжения при запирании IGBT, но и создает динамический стресс для диода.

В своих модулях компания SEMIKRON использует быстрые диоды, производимые по собственной технологии CAL (Controlled Axial Lifetime), позволяющей изменять время жизни носителей. Их основным отличием является плавная характеристика обратного восстановления dirr/dt и оптимально согласованные с IGBT динамические характеристики. Это способствует снижению уровня динамических потерь и EMI, а также уменьшению величины перенапряжений при выключении.

Выбор резистора затвора

Как правило, выходной каскад драйверов строится по двутактной схеме с разделенным выходом, как показано на рисунке 1. Входы обоих MOSFET-транзисторов управляются одним логическим сигналом: когда он имеет высокий уровень, открывается N-канальный ключ, при низком уровне — Р-канальный. Использование разделенного выхода позволяет формировать асимметричное напряжение управления V GE и подбирать номиналы резисторов R G независимо для режимов включения и выключения.

Оптимизация цепи управления затвором подразумевает выбор номиналов R G(on) /R G(off) (при заданном значении V GE), обеспечивающий минимальный уровень динамических потерь, отсутствие опасных осцилляций при переключении, малый ток обратного восстановления оппозитного диода и низкий уровень коммутационных перенапряжений. Поиск оптимума затруднен тем, что часть указанных параметров находится в противоречии друг с другом (см. таблицу 1).

Как правило, для управления более мощным IGBT требуется меньший резистор затвора и наоборот. При этом значение R G , указанное в качестве референсного (R Gref) в технических характеристиках, не всегда обеспечивает наилучший баланс указанных выше свойств. Оптимальная величина резистора для большинства конкретных применений находится в диапазоне R Gref …2 × R Gref . Как правило, величина R Gref является и минимально рекомендуемой, обеспечивающей безопасное отключение предельно допустимого импульсного тока IGBT (ICM). Напомним, что область безопасной работы (ОБР или SOA) нормируется для ICM или двойного номинального тока коллектора ICM = 2 × I C .

В большинстве практических схем именно сопротивление 2 × R Gref обеспечивает необходимый баланс и с него начинается процесс оптимизации динамических характеристик. Уменьшение номинала резистора затвора возможно только до тех пор, пока растущая скорость коммутации тока di/dt не вызывает появления опасных перенапряжений. Следует также помнить о том, что снижение импеданса цепи управления затвором приводит к повышению токовой нагрузки на драйвер и увеличению рассеиваемой им мощности.

Правильность выбора R G при проектировании должна подтверждаться испытаниями готовой конструкции, включающими анализ тепловых режимов и измерение величины V stray при всех условиях эксплуатации вплоть до короткого замыкания. Именно такая методика используется дизайнерским центром SEMIKRON во Франции, разработавшим за 35 лет более 12000 проектов различных устройств, мощностью от десятков кВт до единиц МВт.

При выборе сопротивления затвора следует учитывать, что во время протекания токов заряда/разряда на нем может рассеиваться большая мощность. Рекомендуется выбирать резисторы, имеющие низкий температурный коэффициент ТКС и разброс номиналов, не превышающий 1%. В большинстве случаев хорошим решением является использование параллельного соединения некоторого количества сопротивлений в smd- исполнении (MELF, MINI-MELF). При этом обеспечивается высокая стойкость к импульсным перегрузкам, хорошее распределение тепла и нечувствительность схемы к отказу одного из сопротивлений.

Ошибка в выборе R G может привести к крайне нежелательным последствиям, при этом необходимо анализировать влияние цепи управления затвором на все режимы работы преобразователя. Например, увеличение номинала R G , позволяющее снизить уровень коммутационных выбросов, неизбежно приведет к росту динамических потерь и перегреву силового ключа. Возможным следствием использования неоправданно большого резистора затвора может быть переход IGBT в линейный режим и появление осцилляций в затворной цепи. В свою очередь, как уже было отмечено, результатом применения слишком малого R G является рост всплесков напряжения при переключении и повышение уровня EMI.

Разработчик должен отдавать себе отчет в том, что оптимизация цепи управления затвором не может компенсировать негативные последствия, вызванные неудачной конструкций DC-шины, не обеспечивающей низкое значение распределенной индуктивности L S . В этом случае уровень коммутационных перенапряжений может быть опасным даже в номинальных режимах эксплуатации, поэтому минимизация величины L S является первой и главной задачей разработки звена постоянного тока. Только в случае решения данной проблемы можно думать об оптимизации R G и целесообразности применении режима плавного отключения SSD.

Опубліковано 15.05.2014

Проектирование силовой части обычно начинают с выбора ключей. Наиболее подходящие для этого полевые MOSFET транзисторы. Выбор силовых транзисторов делается на основании данных о максимальном возможный ток и напряжение питающей сети двигателя.

Выбор силовых транзисторов

Транзисторы должны выдерживать рабочей ток с некоторым запасом. Поэтому выбирают полевые транзисторы с рабочим током в 1.2-2 раза больше максимального тока двигателя. В характеристиках полевых транзисторов может быть указано несколько значений тока для различных режимов. Иногда указывают ток, который может выдерживать кристалл Id (Silicon Limited) (он больше) и ток, ограниченный возможностями корпуса транзистора Id (Package Limited) (он меньше). например:

Кроме того, фигурирует ток для импульсного режима (Pulsed Drain Current ), который, значительно больше (в несколько раз), чем максимально возможный постоянный ток.

Надо выбирать транзисторы по постоянному току, и не обращать внимание на параметры, указанные для импульсного режима. При выборе транзистора учитывается только значение постоянного тока. В данном случае – 195А.

Если невозможно подобрать транзистор нужным рабочим током, несколько транзисторов включают параллельно.

При этом обязательно следует применять указанные на схеме резисторы. Их номинал – единицы Ом, но благодаря им соединены параллельно транзисторы открываются одновременно. Если эти резисторы не ставить, может возникнуть ситуация, когда один из транзисторов открывается, а остальные – еще нет. За это короткое время вся мощность сваливается на один транзистор и выводит его из строя. Об определении номинала этих резисторов говорится ниже. Два транзистора, включенных параллельно, выдерживают вдвое больший ток. 3 – в 3 раза больше. Но не следует злоупотреблять этим и строить ключи из большого количества мелких транзисторов.

Выбор полевых транзисторов по напряжению также выполняется с запасом как минимум в 1.3 раза. Это делается для того, чтобы избежать выхода из строя транзисторов из за скачков напряжения во время коммутаций.

Кроме указанных выше параметров, следует поинтересоваться максимальной температурой работы транзистора и будет ли он выдерживать необходимый ток при этой температуре. Одна из важнейших характеристик – это сопротивление открытого транзистора. Его значения могут достигать нескольких миллиом. На первый взгляд – очень мало, но при больших токах на нем будут выделяться значительные объемы тепла, которое придется отводить. Мощность, которая будет греть транзистор в открытом состоянии, рассчитывается по формуле:

P=Rds*Id^2

Где:
Rds – сопротивление открытого транзистора;
Ids – ток, который протекает через транзистор.

Отже, якщо транзистор irfp4468pbf має опір 2.6 мOм, то під час пропускання струму 195 А на ньому буде виділятися 98.865 Ватт тепла. У випадку мостової трьохфазної схеми у кожний момент часу відкриті тільки два ключі. Тобто, на двох відкритих транзисторах буде виділятися однакова кількість тепла (по 98.865 Вт, загалом – 197.73 Вт). Але вони працюють не весь час, а по черзі – парами, тобто кожна пара ключів працює 1/3 часу. Отже правильно сказати, що загалом на всіх ключах буде виділятися 197.73 Вт тепла, а на кожному з ключів (98.865 / 3 = 32.955 Вт). Слід забезпечити відповідне охолоджування транзисторів.

Итак, если транзистор irfp4468pbf имеет сопротивление 2.6 мOм, то при токе 195 А на нем будет выделяться 98.865 Ватт тепла. В случае мостовой трехфазной схемы в каждый момент времени открыты только два ключа. То есть, на двух открытых транзисторах будет выделяться одинаковое количество тепла (по 98.865 Вт, в общем – 197.73 Вт). Но они работают не все время, а по очереди – парами, то есть каждая пара ключей работает 1/3 времени. Так что правильно сказать, что в целом на всех ключах будет выделяться 197.73 Вт тепла, а на каждом из ключей (98.865 / 3 = 32.955 Вт). Следует обеспечить соответствующее охлаждение транзисторов.

Но есть одно “но”

Мы примерно подсчитали те тепловые потери, которые происходят за период, когда ключи полностью открыты. Однако не надо забывать, что для ключей присущи такие явления, как переходные процессы. Именно в момент переключения, когда сопротивление ключа изменяется от практически нулевого до почти бесконечности и наоборот, происходит наибольшее тепловыделение, которое значительно больше тех потерь, которые происходят при открытых ключах.

Уявімо, що ми маємо загрузку 0.55 Ом. Напруга живлячої мережі 100В. При повністю відкритих ключах отримаємо струм 100/0.55 = 181 А. Транзистор закривається і в деякий момент його опір сягає 1 Ом. У цей час через нього тече струм 100/(1+0,55)=64.5А Пам’ятаєте формулу, за якою обчислюється теплова потужність? Виходить, що в цей, дуже короткий, час теплові втрати на транзисторі (1+0.55)*(64.5^2) = 6448 Вт. Що значно більше ніж при відкритому ключі. Коли опір транзистора зросте до 100 Ом втрати будуть 99.45 Вт. Коли опір транзистора зросте до 1 КОм втрати будуть 9.98 Вт. Коли опір транзистора зросте до 10 КОм втрати будуть 0.99 Вт.

Представим, что мы имеем нагрузку 0.55 Ом. Напряжение питающей сети 100В. При полностью открытых ключах получим ток 100 / 0.55 = 181 А. Транзистор закрывается и в некоторый момент его сопротивление достигает 1 Ом. В это время через него течет ток 100 / (1 + 0,55) = 64.5А. Помните формулу, по которой вычисляется тепловая мощность? Получается, что в этот очень короткий момент тепловые потери на транзисторе (1 + 0.55) * (64.5 ^ 2) = 6448 Вт. Что значительно больше чем при открытом ключе. Когда сопротивление транзистора возрастет до 100 Ом потери будут 99.45 Вт. Когда сопротивление транзистора возрастет до 1 кОм потери будут 9.98 Вт. Когда сопротивление транзистора возрастет до 10 кОм потери будут 0.99 Вт.

Если вы создадите очень мощную систему охлаждения, а в транзисторе будет образовываться больше тепла чем он физически сможет отвести от себя (смотри: Maximum Power Dissipation ), он сгорит.

Итак, не трудно понять, чем быстрее будут переключаться ключи, тем меньше тепловые потери, и тем меньше будет температура ключей.

На скорость переключения ключей влияет: емкость затвора полевого транзистора, номинал резистора в цепи затвора, мощность драйвера ключей. От правильного выбора этих элементов зависит насколько эффективно будут работать ключи.

Иногда люди считают, что можно увеличить мощность регулятора лишь изменив ключи на более мощные. Это не совсем так. Более мощные транзисторы имеют большую емкость затвора, а это увеличивает время открывания транзистора, что влияет на их температурный режим. Такое редко случается, но у меня был случай, когда простая замена транзисторов на более мощные увеличила их температуру из за того, что время их переключения выросло. Итак, более мощные транзисторы требуют более мощных драйверов.

Драйверы MOSFET ключей

Что такое драйвер ключей и зачем он нужен? Зачем вообще нужны драйверы? Можно включать полевые транзисторы как показано на схеме:

Да, в этом случае в качестве драйверов выступают биполярные транзисторы. Это также допустимо. Есть также схемы, где в качестве верхних ключей используются транзисторы с P-каналом, в качестве нижних – с N-каналом. То есть, используется два типа транзисторов, что не всегда удобно. К тому же P-канальные транзисторы большой мощности почти невозможно найти. Обычно использование такое сочетание транзисторов с различными каналами применяют в маломощных контроллерах для упрощения схемы.

Использовать однотипные транзисторы, обычно только N-канальные, значительно удобнее, однако это требует соблюдения некоторых требований по управления верхними транзисторами моста. Напряжение на затвор транзисторов надо подавать относительно их истоков (Source). В случае нижнего ключа вопросов не возникает, его виток (Source) присоединен к земле и мы можем спокойно подавать напряжение на затвор нижнего транзистора относительно земли. В случае верхнего транзистора все несколько сложнее, поскольку напряжение на его истоке (Source) изменяется относительно земли.

Объясню. Представим, что верхний транзистор открыт, через него протекает ток. В таком состоянии на транзисторе падает достаточно малое напряжение и можно сказать, что напряжение на истоке Source верхнего транзистора практически равно напряжению питания двигателя. Кстати, чтобы удерживать верхний транзистор открытым, нужно подать на его затвор напряжение, выше напряжение на его истоке (Source), то есть – выше напряжение питания двигателя.

Если верхний транзистор закрыт, а нижний открыт, то на истоке (Source) верхнего транзистора напряжение достигает практически нулю.

Драйвер верхнего ключа обеспечивает подачу на затвор полевого транзистора необходимое напряжение относительно его истоков (Source), и обеспечивает генерацию напряжения, большей по напряжение питания двигателя для управления транзистором. Этим, и не только этим, занимаются драйверы MOSFET ключей.

Выбор драйвера и их многообразие

Многообразие драйверов достаточно велико. Нас интересуют драйверы, которые имеют два входа для верхнего и нижнего ключей (драйверы верхнего и нижнего ключей). Например: IR2101, IR2010, IR2106, IR21064, IR2181, IR2110, IR2113 и др. Надо обратить внимание на параметр Vgs ваших транзисторов. Большинство драйверов рассчитаны для Vgs=20В . Если Vgs транзисторов меньше выходное напряжение драйверов, например Vgs транзистора = 5В, то драйверы с выходным напряжением 20В выведут такие транзисторы из строя.

Большинство драйверов питаются напряжением 10-20В и поддерживают входные сигналы различных уровней -3.3В, 5В, 15В.

Существуют драйверы для трехфазных мостовых схем, например:
IR3230, IRS2334, IRS2334, IR21363, IR21364, IR21365, IR21368, IRS2336, IRS23364D, IRS2336D, IRS26310DJ, IR2130, IR2131, IR2132, IR2133, IR2135, IR2136, IRS2330, IRS2330D, IRS2332, IRS2332D, IR2233, IR2235, IR2238Q, IRS26302DJ .
Такие драйверы ключей могут стать самым подходящим вариантом. К тому же в некоторых трехфазных драйверах есть дополнительная возможность для обеспечения защиты ключей от слишком большого тока и т.п. Довольно интересная серия драйверов IRS233x (D) . Она обеспечивает широкий спектр защит, в том числе защиту от негативных скачков напряжения, защита от короткого замыкания, от перегрузки, защита от снижения напряжения в шине, от снижения напряжения питания, защита от перекрестного включения.

Один из важнейших показателей драйверов – это максимальный выходной ток. Обычно от 200мА до 4000мА. Может показаться что 4 Ампера – это слишком. Но все решает калькулятор. Как отмечалось выше скорость переключения ключей – очень важная вещь. Чем мощнее драйвер, тем меньше времени тратится на переключение ключей. Примерно рассчитать время переключения ключей можно по формуле:

ton = Qg*(Rh+R+Rg)/U

Где:
Qg – полный заряд затвора полевого транзистора;
Rh – внутреннее сопротивление драйвера. Рассчитывается как U/Imax, где U – напряжение питания драйвера, Imax – максимальной выходной ток. Обратите внимание, что максимальной выходной ток может быть различным для верхнего и нижнего транзистора;
R – сопротивление резистора в цепи затвора;
Rg – внутреннее сопротивление затвора транзистор;
U – напряжение питания драйвера.

Например, если мы используем транзистор irfp4468pbf и драйвер IR2101 с максимальным током 200мА. А в цепи затвора резистор 20 Ом, тогда время переключения транзистора:

540*(12/0.2 + 20 + 0.8)/12 = 3636 нС

Заменив драйвер на IR2010 , с максимальным током – 3А, и резистором в цепи затвора – 2ом, получим такое время переключения:

540*(12/3+2+0.8)/12 = 306 нС

То есть, с новым драйвером время переключения сократился более чем в 10 раз. Так что и тепловые потери на транзисторах значительно уменьшатся.

Расчет резисторов в цепи затвора

Я выработал для себя такое правило: сопротивление резистора в цепи затвора полевого транзистора должен быть не менее, чем внутреннее сопротивление драйвера, разделен на 3 Например, драйвер IR2101 питается напряжением 12В, максимальный ток – 0,25А. Его внутреннее сопротивление: 12В / 0,25 = 48Ом. В данном случае резистор в цепи затвора полевого транзистора должно быть больше, чем 48/3 = 16 Ом . Если время переключения транзисторов с выбранными резисторами не устраивает, следует выбрать более мощный драйвер.

Я не могу назвать эту методику идеальной, но она проверена практикой. Если кто сможет прояснить этот момент – буду благодарен.

Иногда к цепи затвора транзистора добавляют диода с резистором или без.

Поскольку во многих случаях силовые транзисторы работают с индуктивной нагрузкой, должны использоваться защитные диоды. Если их не будет, то при выключении транзистора вследствие переходных процессов на индуктивностях (обмотках двигателя) возникнет перенапряжение, что во многих случаях пробивает транзистор и выводит его из строя.

Во многих силовых транзисторах уже есть внутренние защитные диоды и нет необходимости использовать внешние диоды. Но не забудьте это проверить в документации на транзистора.

Dead-Time

Изменение состояния силовых ключей в регуляторе трехфазного бесколлекторного двигателя выполняется в следующей последовательности:

  • выключаем ключ, который надо выключить;
  • ждем некоторое время (Dead-Time) пока закроется транзистор (примерное время переключения транзистора мы рассчитывали ранее), и закончатся переходные процессы, связанные с коммутацией;
  • включаем ключ, который надо включить.

Все драйверы верхнего и нижнего ключей имеют задержку между выходными сигналами чтобы не допустить одновременного открытия обоих транзисторов (смотри: ). Но эта задержка слишком мала. Некоторые драйверы верхнего и нижнего ключей имеют реальный Dead-Time . Но в нашем случае, это абсолютно никак не поможет, потому что если вспомнить как переключаются ключи (смотри: ), то мы увидим, что никогда не бывает такой ситуации, когда ключи одного плеча меняются состояниями. Итак, управлять Dead-Time должен микроконтроллер. Исключение может быть только в случае, когда вы используете специальной трехфазный драйвер, который управляет всеми шестью ключами и имеет реальный Dead-Time .

Датчики тока

Традиционно в качестве датчика тока используют шунт. Зная его сопротивление, измеряют на нем напряжение и вычисляют ток. Но для мощных систем использование шунта не всегда технически оправдано из за слишком больших тепловых потерь на нем. Датчики тока на эффекте Холла имеют практически нулевое сопротивление, поэтому они не греются. К тому же, как правило, питания и уровень выходного сигнала таких датчиков находятся в диапазоне 5В, что очень удобно для реализации регулятора на микроконтроллерах. В настоящее время довольно популярны датчики тока компании Allegro MicroSystems , например серии ACS71X , ACS75X .

Кроме обычного измерения уровня тока микроконтроллером, разумно создать схему аппаратной защиты от превышения критического уровня тока. Для измерения уровня тока микроконтроллер тратит некоторое время. Кроме того, ток измеряют периодически через некоторое время. Такие задержки, а также возможные программные ошибки могут создать ситуацию, когда критический ток успевает вывести из строя устройство еще до того, как придет момент следующего измерения. Схема должна отключать силовые ключи когда ток превышает критическое значение, независимо от работы микроконтроллера. Для реализации такой схемы обычно используют компаратор, на вход которого подают сигнал с датчика тока и опорный сигнал. При превышении допустимого тока компаратор срабатывает. Выход компаратора используют как дискретный сигнал в логических схемах, аварийно отключают ключи. Такая реализация имеет наименьшую задержку.

При разработке силовых схем статических преобразователей первостепенными являются меры по защите силовых транзисторов от теплового пробоя. Поскольку полевые транзисторы MOSFET не имеют вторичного пробоя, в расчетах тепловых режимов вполне можно руководствоваться значениями максимальной температуры и максимальной рассеиваемой мощности. Полная мощность, выделяющаяся на транзисторе в режиме его переключения, определяется из выражения:

где Р п - полная рассеиваемая мощность;

Р пер - потери мощности при переключении;

Р пр - потери на активном сопротивлении канала открытого транзистора;

Pynp - потери на управление в цепи затвора;

Pyr - потери мощности за счет утечки в закрытом состоянии.

где Л Л(оп) - сопротивление транзистора в открытом состоянии (справочный параметр).

Потери проводимости Р пр являются основной составляющей потерь в полевом транзисторе. Эти потери можно вычислить, зная эффективное (действующее) значение тока стока:

Потери мощности, вызванные током утечки (P^) пренебрежимо малы (если, конечно, транзистор исправен), поэтому их вообще нет смысла учитывать. Кроме того, поскольку одно из главных преимуществ полевого транзистора - крайне малые потери в цепи его управления (Р упр), - поэтому и значение потерь на управление можно исключить из расчетов. С учетом проведенных допущений формула (2.1.7) для расчета полных потерь приобретает следующий удобный вид:

Здесь необходимо сделать некоторое уточняющее отступление и напомнить читателю, что расчет рассеиваемой мощности выполняется в целях обеспечения теплового режима силовых транзисторов. Этот расчет пригодится при проектировании охлаждающих радиаторов транзисторов (за подробностями можно обратиться к изданиям и ). Очень важный параметр, без которого не удастся спроектировать охлаждающий элемент, - это так называемое тепловое сопротивление «кристалл-корпус» R thjc транзистора. Исследования показали, что это сопротивление в значительной степени зависит от частоты переключения транзистора, а также от скважности управляющих импульсов, определяемой отношением времени открытого состояния к полному периоду коммутации. В технических условиях на транзисторы обычно приводятся так называемые нормированные переходные характеристики теплового сопротивления «кристалл-корпус» (transient thermal impedance junction-to-case). Как видно из рис. 2.1.11, вследствие инерционности тепловых процессов при больших частотах переключения и малой скважности тепловое сопротивление «кристалл-корпус» значительно снижается. В любом случае разработчику нужно произвести оценку этого сопротивления по графику, чтобы не проектировать радиатор охлаждения силовых элементов «на глазок». Читателю следует знать, что показанные на рис. 2.1.11 графики включаются в основной набор параметров, представляемых фирмами-производителями на силовую элементную базу. Если при выборе элементной базы разработчик столкнется с тем, что эти графики в документации отсутствуют, такой фирме-производителю лучше не доверять и ее продукцию не использовать в своих разработках.

С учетом графиков 2.1.11 тепловое сопротивление «кристаллкорпус» определяется по следующей формуле:

где ZjJJ, D) - переходной коэффициент сопротивления «кристаллкорпус»;

R Q {JC) - тепловое сопротивление «кристалл-корпус» в режиме больших скважностей управляющих импульсов или на постоянном токе.

На рис. 2.1.11 есть еще одна кривая, называемая single pulse (одиночный импульс). Снимается она для одиночного (неповторяющегося) импульса тока. Такой режим работы обычно используется для защитных схем и схем запуска, которые срабатывают один раз. В этом случае, как правило, тепловыделение невелико и силовому элементу радиатор не требуется.

Но вернемся к тепловым потерям. Гораздо сложнее дело обстоит с потерями переключения. Если нагрузка полевого транзистора чисто

Рис. 2.1.11. График зависимости нормированного теплового сопротивления от частоты и скважности импульсов: а - IRFP250; б - IRJL3103D1; в -FB180SA10

активная, потери на переключение невелики, и ими зачастую можно просто пренебречь. Однако активная нагрузка - случай в силовой преобразовательной технике редкий. Гораздо чаще транзисторы статических преобразователей «работают» на нагрузки с сильно выраженной реактивной (индуктивно-емкостной) составляющей, что характеризуется несовпадением максимумов токов и напряжений. Кроме того, в транзисторах, работающих в двухтактных схемах (сюда включаются полумостовые, мостовые и трехфазные схемы), возникают специфические потери обратного восстановления оппозитных диодов. Мы сразу обратимся к методикам расчета динамических потерь в двухтактных схемах, поскольку именно на их основе строится мощная преобразовательная техника.

В двухтактной схеме необходимо рассматривать влияние индуктивности L на остальные элементы схемы. Следует помнить, что реально индуктивность L - это индуктивность намагничивания первичной обмотки высокочастотного трансформатора (если проектируемое устройство - статический преобразователь для питания типовых нагрузок), или индуктивность обмотки двигателя (если разрабатывается регулируемый частотный электропривод).

Обратимся к рис. 2.1.12 и рассмотрим коммутационные процессы, происходящие в представленной типовой схеме. Первоначально (что

размыкании ключевого элемента. Понятно, что амплитуда выбросов не может стать больше напряжения питания или потенциала «земли», так как оппозитные диоды будут открываться и «разряжать» выбросы на источник питания. И все же, если энергия колебательного процесса достаточно велика, он может не закончиться к моменту следующего открытия ключевого элемента. Коммутация при протекании тока через обратный диод приведет к ситуации так называемого «тяжелого переключения», когда силовой транзистор будет кратковременно находиться в режиме «сквозных токов». Чтобы «погасить» эти выбросы, параллельно первичной обмотке трансформатора включают RC-цепь с последовательно соединенными конденсатором и резистором.

Только что мы рассмотрели так называемый «облегченный» режим работы транзистора в двухтактных схемах, когда управляющие импульсы поступают на затворы VT1 и VT2 симметрично, и в моменты начала коммутации токи через оппозитные диоды не проходят. Рассчитать мощность потерь переключения в данном случае несложно. Для каждого транзистора, работающего в полумостовой или мостовой схеме со стандартной трансформаторной нагрузкой, она может быть рассчитана по формуле

где /^ тах - максимальный ток стока.

Встречается и другой случай, когда транзисторы вынуждены работать в «тяжелом» режиме переключения. Этот случай обычно рассматривают в устройствах частотного управления двигателями, имеющими значительную индуктивность обмоток. Здесь длительность открытого состояния «верхнего» (VT1) и «нижнего» (VT2) ключевых элементов полумоста и моста могут быть неравными: в предельном случае открывающие импульсы одного из силовых ключей вообще исчезают. В случае несимметрии управляющих импульсов ток в индуктивной нагрузке не меняет своего направления, а это значит, что, например, после выключения транзистора VT2 ток i L (рис. 2.1.12 в) будет протекать через его оппозитный диод. Следовательно, выключение транзистора VT1 пройдет в режиме кратковременного короткого замыкания, так.как диод VD2 не сможет мгновенно восстановить запертое состояние. Чем дольше оппозитный диод будет задерживать восстановление запертого состояния, тем больше тепла выделится на транзисторе. Поэтому для расчета потерь переключения в «тяжелом» режиме необходимо учитывать как динамические потери переключения транзистора, так и потери на обратное восстановление оппозитных диодов. Рассчитать потери переключения здесь поможет следующая формула:

где Q rr - заряд обратного восстановления оппозитного диода (справочный параметр).

Также следует знать, что заряд обратного восстановления оппозитного диода (согласно рис. 2.1.14) незначительно зависит от прямого тока, протекающего через диод после отключения транзистора, но в значительной степени определяется величиной изменения прямого тока во времени на этапе обратного восстановления, то есть величины производной тока. На практике это означает, что замедление коммутационного процесса, вызывающего обратное восстановление, может снижать заряд, а значит, и выделяемую энергию. Следовательно, в режиме «тяжелого» переключения необходимо замедлять процесс открывания полевых транзисторов. Снизить скорость открывания может ограничение тока затвора с помощью увеличения затворного резистора, а также шунтирование переходов «сток-исток» транзисторов RC-цепями, ограничивающими скорость переключения. Правда, при этом растут коммутационные динамические потери переключения.

Рис. 2.1.14. Зависимость заряда обратного восстановления диода от скорости коммутационного процесса

Довольно часто в практике разработки статических преобразователей встречаются случаи, когда нужно коммутировать ток, значение которого выше предельного тока одиночного транзистора. И если выбрать более мощный прибор оказывается затруднительно, можно просто включить параллельно несколько приборов, рассчитанных на меньшие токи. Тогда общий ток будет равномерно распределяться по отдельным транзисторам. Для параллельного их соединения нужно иметь приборы с близкими значениями порогового напряжения. Как правило, транзисторы одного типа имеют очень близкие значения порогового напряжения, поэтому крайне нежелательно выбирать для параллельной работы транзисторы разных типономиналов. А еще лучше вообще взять транзисторы из одной производственной партии, изготовленных в единых условиях.

Чтобы обеспечить равномерный прогрев линейки транзисторов, их нужно устанавливать на общий радиатор и, по возможности, ближе друг к другу. Необходимо также помнить, что через два параллельно включенных транзистора можно пропускать в два раза больший ток, не снижая нагрузочной способности одиночных приборов, но при этом входная емкость, а значит, и заряд объединенного затвора, возрастают в два раза. Соответственно, схема управления параллельно соединенными транзисторами должна обладать возможностью обеспечить заданное время коммутации.

Но и здесь есть свои особенности, свои «хитрости». Если соединить затворы полевых транзисторов непосредственно, можно получить весьма неприятный эффект «звона» при выключении - оказывая влияние друг на друга через затворы, транзисторы будут произвольно открываться и закрываться, не подчиняясь сигналу управления. Чтобы исключить «звон», на выводы затворов рекомендуется надевать небольшие ферритовые трубочки, предотвращающие взаимное влияние затворов, как показано на рис. 2.1.15, а.

Данный способ встречается сегодня очень редко (так как технология производства ферритовых трубок достаточно сложна). Более простой и доступный схемотехнический прием показан на рис. 2.1.15, б,

Рис. 2.1.15. Параллельное включение MOSFET: а - с гасящими ферритовыми трубками; б - с затворными резисторами

заключающийся в установке в цепях каждого затвора одинаковых резисторов сопротивлением в десятки-сотни Ом. Величина затворных резисторов обычно выбирается из соотношения:

где Q g - величина заряда затвора для одного транзистора.

После этого необходимо определить величину тока, которую обеспечивает устройство управления затворами транзисторов. Этот ток определяется из условия действия напряжения U g на параллельно соединенные затворные резисторы. То есть величину R g , полученную из формулы (2.1.13), необходимо при вычислениях уменьшить во столько раз, сколько транзисторов включается параллельно.

Рис. 2.1.16. Вариант параллельного включения транзисторов MOSFET

Транзисторы VTl…VT4 установлены на общий радиатор максимально близко друг к другу, что обеспечивает их равномерный прогрев. Силовые шины, которые могут быть выполнены как печатными, так и объемными проводниками (например, медной полосой или луженым проводом), подключены к стоку и истоку всех транзисторов. Затворные резисторы Rg можно расположить над силовыми шинами. Закрепляются транзисторы на радиаторе с помощью винтов и прижимных пружин. Иногда для улучшения теплового контакта между

корпусами радиаторов используется следующая технология: транзисторы крепятся своими теплоотводящими пластинами к общей полосе из меди (или ее сплавов), а она, в свою очередь, привинчивается к радиатору, предварительно смазанному в месте контакта теплопроводящей пастой. И, конечно, следует обеспечить электрическую изоляцию отдельных групп транзисторов во избежание коротких замыканий в тех местах, где они по электрической схеме не должны существовать.

На рис. 2.1.17 приведен внешний вид варианта конструктивного узла трехфазного управляемого моста, составленного из параллельно включенных транзисторов MOSFET, а на рис. 2.1.18 - электрическая схема соединения транзисторов. Радиатор имеет сквозные каналы, через которые он принудительно продувается потоком воздуха.